Ethereum Classic Documentation
Release 0.1

Ethereum classic community

July 31, 2016

Contents

1 Contents 3
1.1 Introduction e e e e e 3
[.1.1 Whatis Ethereum? e 3
A next generation blockchain L L oL o 3
Ethereum Virtual Machine 3

How does Ethereum work? 4

1.1.2 Howtousethis guide? e 6
Using Ethereum: The Basics o et e 6

1.1.3 The Classic ‘Release’ i it i et 6
Motivation Lo e e e e e e e e e e e e e e 6

Goals e e 6

A Crypto-Decentralist Manifesto L 6

1.1.4 Web 3: A platform for decentralized apps 7
Smart CONtracts v v v vt e e e e e e e e e e e e e e e e 8

DAO . . e 8

1.1.5 History of Ethereum 8
Inception e e 8

The Ethereum Foundation and the ether presale 9
ETH/DEV and Ethereum development. 9

The Ethereum Frontier launch L. 10

1.1.6 - Community e e 11
Reddit o e 11
Ethereum Classic Wiki o 00 o e 11
Telegram e e e e e e e e e e e e e e 12

T 12
Ethereum Improvement Proposals (EIPs) 12
Chinese Community L e e e e e e e e 12
Russian Community oo e e e e e e 12
Indonesian Community oL e e e e e e e e e e e 12

Gitter Rooms (old) e e e e e 12

Stack Exchange (old) L e 13
Obsolete L e e 13

1.1.7 The Ethereum Foundation 13
Ethereum Foundation’s faces to the community 14

L.I.8 Contributors e e e e e e 14
1.2 Ethereum Clients o o e e e e e e 17
1.2.1 Choosingaclient e 17
Why are there multiple Ethereum clients? 17

1.22 Installinga Client o e e 17
What should T install on my desktop/laptop? 17

What should I install on my mobile/tablet? 18

What should I'installonmy SBC? o 18

1.3

1.4

1.5

1.6

1.2.3 cpp-ethereum e e e e e e e e e 19

Quick Start e e e e e e 19
Details 20
124 go-ethereum e 42
1.25 pyethapp o o e e e 42
1.2.6 ethereumjs-lib L L 43
1.2.7 Ethereum(J) e e e e 43
1.2.8 ethereumH 43
1.29 Parity e e e e e e e e 44
1.2.10 ruby-ethereum L e e e e e 44
Account Managementol e e e e e e e e e 44
L3.1 Accounts 44
1.3.2 Keyfiles o o e e e e e e e 45
1.3.3 Creating an aCCount« e v vttt ettt e e e e e e 45
Using geth account new e 45
Using gethconsole e 46
Using Mist Ethereum wallet 47
Creating a Multi-Signature Walletin Mist 48
Using Eth o e e e 49
Using EthKey (deprecated) 50
1.3.4 Importing your presale wallet o L 0oL 51
Using Mist Ethereum wallet 51
Using geth e e e e e e e e e 52
1.3.5 Updating an account o v vt v e e e e e e e e e e e 52
Usinggeth o L o e e 52
1.3.6 Backup and restore accountsol o e 52
Manual backup/restoreo e e e e e 52
Importing an unencrypted privatekey Lo 53
Ether o 53
1.4.1 Whatisether? e 53
Denominationsl e e e e e 53
1.42 Ethersupply o o o L e 54
1.43 Gettingether 54
Trustless SErvices oL 54
List of centralised exchange marketplaces 55
Centralised fixed rate exchanges L .. 55
Trading and price analytics oL 55
1.4.4 Online wallets, paper wallets, and cold storage 55
1.4.5 Sendingether e e e e e e 56
1.46 Gasandether 57
The Ethereumnetwork L 57
1.5.1 Connecting tothe Network L. 57
The Ethereum network L 57
Howtoconnect i e 58
Download the blockchain faster 59
Static Nodes, Trusted Nodes, and Boot Nodes 60
1.52 TestNetworks o o o o o e e e e e e e 61
Morden testnet L. e e e e e 61
1.5.3 Settingup alocal private testnet 61
eth (CH+client) o e e e e 61
geth (Goclient) o . o o e e e e e e 62
MINIng o e e e e e e 64
1.6.1 Introduction e e e e e e e 64
What is mining? e e e 65
Miningrewardso e e e e e e e e e e e e e e 65
EthashDAG 66
1.6.2 Thealgorithm e 66
1.63 CPUMINING e e 67

1.7

Using geth e e e e e e e e e e e e 67

1.64 GPUMINING v o o e 68
Hardware e 68
Ubuntu Linux Set-up o Lo e e e e e 68
Macset-uUp 69
WINdOwS SEt-UP v v v ot e e e 69
Using ethminer withgeth e 70
Using ethminer witheth 70

1.6.5 Poolmining L e e e e e e e 72
Mining pools L e e e e e 72

1.6.6 MINING rESOUICES . . « & v v v v v e e e e e e e e e e e e e e e e e e 72
POSvs POW e 73

Contracts and Transactions o e e e e 73

1.7.1 Account Types, Gas, and Transactions 73
EOA vscontract accounts oo it e e e e e e e e e e 73
What is a transaction? oL e e e e e e 74
Whatis amessage? oL e e e e e e 74
Whatis gas? e e e e e e e e e e 74
Estimating transaction CoStSt e e e e e e 75
Account interactions example - betting contracto oL 76
Signing transactionsoffline 78

172 Contracts oo e e e e e e e e e e 79
Whatisacontract? e e 79
Ethereum high level languages 79
Writingacontract L. e 80
Compilingacontract L 80
Create and deploy acontract v vt i it e e 82
Interacting with acontract o i e e e 83
Contract metadata 83
Testing contracts and transactions au e el 84

1.7.3 Accessing Contracts and Transactions 85
RPC . . e 85
Conventionsttt e e e e e e e e e e e 85
Deploy contract o e e e e e e e e e e e 85
Interacting with smart contracts Lo 87
Web3.js . . . e 88
Console e e e e 88
Viewing Contracts and Transactions 89

L7.4 MIX . .o e e e e 89
Project Editor e e e e 89
Scenarios Editor oL 90
State VIEWET o e e e e e e e e 91
Transaction Explorer 92
JavaScriptconsole e e e e 93
Transaction debugger e e e e e 94
Dapps deployment L e e e e 94
Code Editor o o e e e e 95

175 Dapps . . . o o 95
Dapp direCtories o i e e e e e e e e e e e e e e e e e 95
Dapp browsers o v it e e e e e e e e e e e e e e e 96

1.7.6 Developer ToOIS o 0 o i e e e e e e e e e 96
Dapp development resourceso e 96
Mix-IDE e e 97
IDEs/Frameworks e e e 97
Ethereum-console 97
Base layer Services i e e e e e e e e e e e e e 98
The EVM L e 99

1.7.7 Ethereum Tests o 0 L e e e 99

Using Testetho o e 99

Blockchain Tests oo o o e e 101
State Tests oL 103
RLPTeStS . . . o o o o e e e e e e e e e e e e 106
Difficulty Tests o o e 106
Transaction Tests L e 107
VMITESIS . o o o v e e e e e e e e e e e 108
1.7.8 Web3 Base Layer Services o v v i i i e e e e e 110
Swarm - Decentralised data storage and distribution. 111
Whisper - Decentralised messaging oo 111
Name registry o v o e o e e e e e e e e e e e e 111
Contract TegiStry v i i e e e e e e e e e e e e e 111
1.8 Frequently Asked QUEStIONS i it e e e e e e e e e 112
1.8.1 QUEStiONS o e e e e e e e e e e e e e e e e e e 112
What is Ethereum? L e 112
I have heard of Ethereum, but what are Geth, Mist, Ethminer, Mix? 112
How can I store big files on the blockchain? 112
Is Ethereum based on Bitcoin? 113
What’s the future of Ethereum? 113
What’s the difference between account and “wallet contract™? 113
Are keyfiles only accessible from the computer you downloaded the clienton? 113
How long should it take to download the blockchain? 113
How do I get a list of transactions into/out of an address? 113
Can a contract pay forits execution?o 113
Can a contract call another contract? 113
Can a transaction be signed offline and then submitted on another online device? 113
How to get testnet Ether? 114
Can a transaction be sent by a third party? i.e can transaction broadcasting be outsourced . 114
Can Ethereum contracts pull data using third-party APIs?. 114
Is the content of the data and contracts sent over the Ethereum network encrypted? 114
Can I store secrets or passwords on the Ethereum network? 114
How will Ethereum combat centralisation of mining pools? 114
How will Ethereum deal with ever increasing blockchain size? 114

How will Ethereum ensure the network is capable of making 10,000+ transactions-per-
second? ..o L e e e 115
Where do the contracts reside? L. oL o 115
Your question is still not answered? oo o o oL 115
1.9 Glossary o o e e e e 115
1.10 The Classic Documentation Initiative 123
1.10.1 Purpose and Audience i e e e e 123
1.10.2 Resources for Exemplary Documentation 123
1.10.3 Restructured Text Markup, Sphinx oo 0oL, 123
1.10.4 Compilation and Deployment 124
1.10.5 Processing Tips o o v i i i e e e 124
1.10.6 Referencing Old Documentation i i v v 124
1.10.7 Migrate and Convert Old Wiki Content Using Pandoc 124
2 Improve the Documentation 125

Ethereum Classic Documentation, Release 0.1

classic

ethereum

Documentation

This documentation is the result of an ongoing collaborative effort by volunteers from the Ethereum Community.
Although it has not been authorized by the The Ethereum Foundation, we hope you will find it useful, and welcome
new Contributors.

Contents 1

Ethereum Classic Documentation, Release 0.1

2 Contents

CHAPTER 1

Contents

1.1 Introduction

1.1.1 What is Ethereum?

Ethereum is an open blockchain platform that lets anyone build and use decentralized applications that run on
blockchain technology. Like Bitcoin, no one controls or owns Ethereum — it is an open-source project built by
many people around the world. But unlike the Bitcoin protocol, Ethereum was designed to be adaptable and
flexible. It is easy to create new applications on the Ethereum platform, and with the Homestead release, it is now
safe for anyone to use those applications.

A next generation blockchain

Blockchain technology is the technological basis of Bitcoin, first described by its mysterious author Satoshi
Nakamoto in his white paper “Bitcoin: A Peer-to-Peer Electronic Cash System”, published in 2008. While the use
of blockchains for more general uses was already discussed in the original paper, it was not until a few years later
that blockchain technology emerged as a generic term. A blockchain is a distributed computing architecture where
every network node executes and records the same transactions, which are grouped into blocks. Only one block
can be added at a time, and every block contains a mathematical proof that verifies that it follows in sequence
from the previous block. In this way, the blockchain’s “distributed database” is kept in consensus across the whole
network. Individual user interactions with the ledger (transactions) are secured by strong cryptography. Nodes
that maintain and verify the network are incentivized by mathematically enforced economic incentives coded into
the protocol.

In Bitcoin’s case the distributed database is conceived of as a table of account balances, a ledger, and transactions
are transfers of the bitcoin token to facilitate trustless finance between individuals. But as bitcoin began attracting
greater attention from developers and technologists, novel projects began to use the bitcoin network for purposes
other than transfers of value tokens. Many of these took the form of “alt coins” - separate blockchains with
cryptocurrencies of their own which improved on the original bitcoin protocol to add new features or capabilities.
In late 2013, Ethereum’s inventor Vitalik Buterin proposed that a single blockchain with the capability to be
reprogrammed to perform any arbitrarily complex computation could subsume these many other projects.

In 2014, Ethereum founders Vitalik Buterin, Gavin Wood and Jeffrey Wilcke began work on a next-generation
blockchain that had the ambitions to implement a general, fully trustless smart contract platform.

Ethereum Virtual Machine

Ethereum is a programmable blockchain. Rather than give users a set of pre-defined operations (e.g. bitcoin
transactions), Ethereum allows users to create their own operations of any complexity they wish. In this way, it
serves as a platform for many different types of decentralized blockchain applications, including but not limited
to cryptocurrencies.

Ethereum Classic Documentation, Release 0.1

Ethereum in the narrow sense refers to a suite of protocols that define a platform for decentralised applications.
At the heart of it is the Ethereum Virtual Machine (“EVM”), which can execute code of arbitrary algorithmic
complexity. In computer science terms, Ethereum is “Turing complete”. Developers can create applications
that run on the EVM using friendly programming languages modelled on existing languages like JavaScript and
Python.

Like any blockchain, Ethereum also includes a peer-to-peer network protocol. The Ethereum blockchain database
is maintained and updated by many nodes connected to the network. Each and every node of the network runs
the EVM and executes the same instructions. For this reason, Ethereum is sometimes described evocatively as a
“world computer”.

This massive parallelisation of computing across the entire Ethereum network is not done to make computation
more efficient. In fact, this process makes computation on Ethereum far slower and more expensive than on a
traditional “computer”. Rather, every Ethereum node runs the EVM in order to maintain consensus across the
blockchain. Decentralized consensus gives Ethereum extreme levels of fault tolerance, ensures zero downtime,
and makes data stored on the blockchain forever unchangeable and censorship-resistant.

The Ethereum platform itself is featureless or value-agnostic. Similar to programming languages, it is up to en-
trepreneurs and developers to decide what it should be used for. However, it is clear that certain application types
benefit more than others from Ethereum’s capabilities. Specifically, ethereum is suited for applications that
automate direct interaction between peers or facilitate coordinated group action across a network. For in-
stance, applications for coordinating peer-to-peer marketplaces, or the automation of complex financial contracts.
Bitcoin allows for individuals to exchange cash without involving any middlemen like financial institutions, banks,
or governments. Ethereum’s impact may be more far-reaching. In theory, financial interactions or exchanges of
any complexity could be carried out automatically and reliably using code running on Ethereum. Beyond financial
applications, any environments where trust, security, and permanence are important — for instance, asset-registries,
voting, governance, and the internet of things — could be massively impacted by the Ethereum platform.

How does Ethereum work?

Ethereum incorporates many features and technologies that will be familiar to users of Bitcoin, while also intro-
ducing many modifications and innovations of its own.

Whereas the Bitcoin blockchain was purely a list of transactions, Ethereum’s basic unit is the account. The
Ethereum blockchain tracks the state of every account, and all state transitions on the Ethereum blockchain are
transfers of value and information between accounts. There are two types of accounts:

» Externally Owned Accounts (EOAs), which are controlled by private keys
¢ Contract Accounts, which are controlled by their contract code and can only be “activated” by an EOA

For most users, the basic difference between these is that human users control EOAs - because they can control the
private keys which give control over an EOA. Contract accounts, on the other hand, are governed by their internal
code. If they are “controlled” by a human user, it is because they are programmed to be controlled by an EOA
with a certain address, which is in turn controlled by whoever holds the private keys that control that EOA. The
popular term “smart contracts” refers to code in a Contract Account — programs that execute when a transaction is
sent to that account. Users can create new contracts by deploying code to the blockchain.

Contract accounts only perform an operation when instructed to do so by an EOA. So it is not possible for a
Contract account to be performing native operations like random number generation or API calls — it can do these
things only if prompted by an EOA. This is because Ethereum requires nodes to be able to agree on the outcome
of computation, which requires a guarantee of strictly deterministic execution.

Like in Bitcoin, users must pay small transaction fees to the network. This protects the Ethereum blockchain from
frivolous or malicious computational tasks, like DDoS attacks or infinite loops. The sender of a transaction must
pay for each step of the “program” they activated, including computation and memory storage. These fees are
paid in amounts of Ethereum’s native value-token, ether.

These transaction fees are collected by the nodes that validate the network. These “miners” are nodes in the
Ethereum network that receive, propogate, verify, and execute transactions. The miners then group the trans-
actions — which include many updates to the “state” of accounts in the Ethereum blockchain — into what are
called “blocks”, and miners then compete with one another for their block to be the next one to be added to the

4 Chapter 1. Contents

Ethereum Classic Documentation, Release 0.1

blockchain. Miners are rewarded with ether for each successful block they mine. This provides the economic
incentive for people to dedicate hardware and electricity to the Ethereum network.

Just as in the Bitcoin network, miners are tasked with solving a complex mathematical problem in order to suc-
cessfully “mine” a block. This is known as a “Proof of Work”. Any computational problem that requires orders
of magnitude more resources to solve algorithmically than it takes to verify the solution is a good candidate for
proof of work. In order to discourage centralisation due to the use of specialised hardware (e.g. ASICs), as has
occurred in the Bitcoin network, Ethereum chose a memory-hard computational problem. If the problem requires
memory as well as CPU, the ideal hardware is in fact the general computer. This makes Ethereum’s Proof of
Work ASIC-resistant, allowing a more decentralized distribution of security than blockchains whose mining is
dominated by specialized hardware, like Bitcoin.

Learn about Ethereum

[to be extended]

PR videos with some pathos:
* Ethereum: the World Computer

* Ethereum — your turn

Blockchain and Ethereum 101

e Explain bitcoin like I'm five - an excellent introduction to blockchain technology and bitcoin to the mildly
techsavvy layperson.

* https://medium.com/@creole/7-a-simple-view-of-ethereum-e276f76c980b
¢ http://blog.chain.com/post/92660909216/explaining-ethereum
* Explain Ethereum to non-technical people Q&A on stackexchange
» Reddit threads on ELI5-ing Ethereum:
(11 [2] (3141 (51 (61 [71 (81 (91 [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]

Videos

* http://change.is/video/ethereum-the-world-computer-featuring-dr-gavin-wood

Infographics
* Ethereum explained...[to your mother]
* http://decentral.ca/wp-content/uploads/2016/03/infographic.jpg

* https://medium.com/@angelomilan/ethereum-explained-to-my-mom-infographic-
673e32054c1c#.n9kzhmebv

Comparison to alternatives
« NXT
¢ MaidSafe

1.1. Introduction 5

https://www.youtube.com/watch?v=j23HnORQXvs
https://vimeo.com/88959651
https://medium.com/@nik5ter/explain-bitcoin-like-im-five-73b4257ac833
https://medium.com/@creole/7-a-simple-view-of-ethereum-e276f76c980b
http://blog.chain.com/post/92660909216/explaining-ethereum
http://ethereum.stackexchange.com/questions/45/how-would-i-explain-ethereum-to-a-non-technical-friend
https://www.reddit.com/r/ethereum/comments/43brik/explaining_ethereum_to_friends/
https://www.reddit.com/r/ethereum/comments/3c132d/eli5_what_you_guys_do_here/
https://www.reddit.com/r/ethereum/comments/1vvz13/eli5_ethereum/
https://www.reddit.com/r/ethereum/comments/1vb1gc/is_ethereum_an_alt_coin_can_anyone_eli5/
https://www.reddit.com/r/ethereum/comments/4279dh/eli5_what_exactly_is_ethereum/
https://www.reddit.com/r/ethereum/comments/2hl10p/eli5_ethereum/
https://www.reddit.com/r/ethereum/comments/41y8by/the_best_way_i_can_eli5_ethereum_to_someone/
https://www.reddit.com/r/ethereum/comments/44b69e/i_dont_understand_the_technology/
https://medium.com/@nik5ter/explain-bitcoin-like-im-five-73b4257ac833
https://www.reddit.com/r/ethereum/comments/1vb1gc/is_ethereum_an_alt_coin_can_anyone_eli5/
https://www.reddit.com/r/ethereum/comments/2dpgwy/eli5_ethereum/
https://www.reddit.com/r/ethereum/comments/47u5y9/explain_what_ethereum_is_to_a_bitcoin_trader/
https://www.reddit.com/r/ethereum/comments/27wsgq/eli5_ethereum_its_uses_its_features_its_future/
https://www.reddit.com/r/ethereum/comments/4936d3/are_you_new_to_ethereum_here_are_many/
https://www.reddit.com/r/ethereum/comments/4279dh/eli5_what_exactly_is_ethereum/
https://www.reddit.com/r/ethereum/comments/3n37dp/explaining_ethereum_ecosystem_for_normal/
https://www.reddit.com/r/ethereum/comments/271qdz/can_someone_explain_the_concept_of_gas_in_ethereum/
https://www.reddit.com/r/ethereum/comments/3hg7id/why_should_the_average_person_care_about_ethereum/
https://www.reddit.com/r/ethereum/comments/43exre/what_are_the_advantages_of_ethereum_over_other/
http://change.is/video/ethereum-the-world-computer-featuring-dr-gavin-wood
https://blog.ethereum.org/wp-content/uploads/2015/06/Ethereum-image-infographic-beginners-guide.png
http://decentral.ca/wp-content/uploads/2016/03/infographic.jpg
https://medium.com/@angelomilan/ethereum-explained-to-my-mom-infographic-673e32054c1c#.n9kzhme6v
https://medium.com/@angelomilan/ethereum-explained-to-my-mom-infographic-673e32054c1c#.n9kzhme6v
https://www.reddit.com/r/ethereum/comments/23aejv/eli5_what_is_the_qnce_between_ethereum_and/
https://www.reddit.com/r/ethereum/comments/22r49u/how_is_maidsafe_different_then_etherium/

Ethereum Classic Documentation, Release 0.1

1.1.2 How to use this guide?

Using Ethereum: The Basics

This section captures the basic ways in which a user would want to participate in the Ethereum project. First of all
becoming a node in the network you need to run an Ethereum client. Multiple implementations are listed in the
section Choosing a client which also gives you advice what clients to choose in various setups. Connecting to the
Network gives you basic information about networks, connectivity troubleshooting and blockchain synchroniza-
tion. Advanced network topics like setting up private chains is found in Test Networks.

1.1.3 The Classic ‘Release’

Ethereum ‘Classic’ is the original unmolested Ethereum block chain of the Ethereum platform. We believe in
decentralized, censorship-resistant, permissionless blockchains. We believe in the original vision of Ethereum as
a world computer you can’t shut down, running irreversible smart contracts. We believe in a strong separation
of concerns, where system forks are only possible in order to correct actual platform bugs, not to bail out failed
contracts and special interests. We believe in censorship-resistant platform that can be actually trusted - by anyone.

Motivation

Ethereum Foundation responded to DAO debacle in the worst way possible. Special interests controlling the
Foundation are ramming through DAO bailout hardfork against principled opposition of a significant economic
minority of Ethereum stakeholders. According to (diligently hidden, pro-fork) coin vote on Carbonvote, 13%
of ETH holders oppose this hardfork. Also, about 22% of Ethereum miners voted against the previous ‘DAO
softfork’ and would logically oppose hardfork as well. Such a significant minority of stakeholders should not be
silenced or intimidated into submission - they should be given a clear choice.

If we want to continue to move forward and guarantee survival of the original Ethereum vision, we must fork
Ethereum. This will lay the foundation to build secure decentralized applications that are actually censorship
resistant.

More: http://github.com/ethereumclassic/freeworldcomputer-project

Goals

The main goal of the project is to ensure survival of the original Ethereum blockchain. We will strive to provide
alternative for people who strongly disagree with DAO bailout and the direction Ethereum Foundation is taking
their project. Anyone opting to remain on the original chain should have such opportunity.

A Crypto-Decentralist Manifesto

by: Bit Novosti

Blockchains are going to rule the world, providing a mechanism for scaling social and economic cooperation to
an unprecedented level—a truly global scale. Such cooperation will involve not only human beings, groups and
associations but also a growing multitude of increasingly independent artificial agents.

* Every blockchain creates a social network around its applications, with network value growing exponentially
with the number of participants in accordance with Reed’s Law. This value isn’t extracted by intermedi-
aries or controllers, as with previous centralized models. Instead, it’s shared among participants, providing
economic incentives for cooperation without coercion.

* Not all blockchains are created equal. There are three key characteristics that make scalable blockchain-
enabled cooperation possible: openness, neutrality and immutability.

* Openness is necessary. It goes without saying that the rules of the game should be open for anyone to see
and understand. Anyone should be able to participate in any layer of the system without asking for any per-
mission whatsoever. Anyone should be able to use the network in accordance with its rules. Anyone should

6 Chapter 1. Contents

http://github.com/ethereumclassic/freeworldcomputer-project

Ethereum Classic Documentation, Release 0.1

be able to create their own client implementing the open protocol. Anyone should be able to contribute to
network security, and so on. No registration, identification or other preconditions should limit participation.
All such limitations prevent the network from scaling and their enforcement creates centralization risks.

¢ Neutrality is necessary. It’s important for anyone participating in blockchain-enabled cooperation to be
on an equal footing with everyone else. It doesn’t matter if you wield huge economic power or only a tiny
amount. It doesn’t matter whether you’re a saintly Mother Theresa or a vicious drug dealer. It doesn’t matter
whether you’re a human or a refrigerator. It doesn’t matter what you believe in, what political theory you
subscribe to, or whether you’re a moral or immoral person. A participant’s ethnicity, age, sex, profession,
social standing, friends or affiliations, make or model, goals, purposes or intentions—none of this matters
to the blockchain even a bit. The rules of the game are exactly the same for everyone, period. Without
neutrality, the system is skewed towards one set of participants at the expense of others. In that case, it’s
less likely to gain universal acceptance and maximize network value for everyone.

* Immutability is necessary. The blockchain is a truth machine preserving one universally accepted version
of history, one immutable sequence of events. What’s true once is always true, regardless of political or
business interests, and no amount of lobbying can change that. If it’s simply not possible to change history,
then no resources are wasted on the effort. If there are any loopholes at all, then sufficiently motivated
and determined interest groups will exploit them at the expense of others, diminishing network value for
everyone.

¢ The rules governing the blockchain network are known in advance. They’re exactly the same for everyone
and not subject to change other than with 100% consensus. Yes, it must be 100%. Because any change to
the system’s rules that not all participants freely agree to creates a network split, diminishing network value
for everyone.

It’s impossible to achieve these blockchain characteristics without the system being truly decentralized. If any
aspect of the blockchain system becomes subject to centralized control, this introduces an attack vector enabling
the violation of one or more of the key blockchain characteristics. It may be possible to limit participation (such
as by enforcing AML/KYC rules), thus violating openness. It may be possible to enforce discriminatory policies
(such as by filtering “illegal” transactions), thus violating neutrality. It may be possible to rewrite the history of
events (such as by confiscating or “redistributing” funds), thus violating immutability. Introducing centralized
chokepoints creates a precondition for the introduction of “blockchain intermediaries or controllers” who can
siphon value out of the system at other participants’ expense.

So decentralization is the most important feature of blockchain systems, the one everything else depends on. With
decentralization, blockchains will come to rule the world. Without it, they’ll be “contained” and railroaded into
niche applications.

We decentralists are committed to keeping blockchains open, neutral and immutable. We’re committed to keeping
blockchain systems decentralized. This informs all our actions and positions towards any developments in the
crypto world and beyond. All attempts to violate any of the key blockchain characteristics should be fought.
All changes to a blockchain’s rules that introduce new centralization risks or strengthen existing ones should be
fought. Only developments that are clearly beneficial to decentralization or strengthen the three key blockchain
characteristics should be supported and encouraged. The blockchain revolution won’t be centralized. Let’s make
sure of it.

Onward.

1.1.4 Web 3: A platform for decentralized apps

Many have come to believe that an open, trustless blockchain platform like Ethereum is perfectly suited to serve
as the shared “back end” to a decentralized, secure internet - Web 3.0. An internet where core services like DNS
and digital identity are decentralized, and where individuals can engage in economic interactions with each other.

As intended by the Ethereum developers, Ethereum is a blank canvas and you have the freedom to build whatever
you want with it. The Ethereum protocol is meant to be generalized so that the core features can be combined in
arbitrary ways. Ideally, dapp projects on Ethereum will leverage the Ethereum blockchain to build solutions that
rely on decentralized consensus to provide new products and services that were not previously possible.

Ethereum is perhaps best described as an ecosystem: the core protocol is supported by various pieces of infras-
tructure, code, and community that together make up the Ethereum project. Ethereum can also be understood by

1.1. Introduction 7

Ethereum Classic Documentation, Release 0.1

looking at the projects that use Ethereum. Already, there are a number of high-profile projects built on Ethereum
such as Augur, Digix, Maker, and many more (see Dapps). In addition, there are development teams that build
open source components that anyone can use. While each of these organizations are separate from the Ethereum
Foundation and have their own goals, they undoubtedly benefit the overall Ethereum ecosystem.

Further Watching/Reading:
* Vitalik Buterin - TNABC 2015: https://www.youtube.com/watch?v=FjheOMVRHO4
* Gavin Wood - DEVCON 1 - Ethereum for Dummies: https://www.youtube.com/watch?v=U_LKO0t_qgaPo
¢ Ethereum London Meetup (best detailed here): https://www.youtube.com/watch?v=GJGIleSCgskc

Smart contracts

by Alex:

Would you enter in a contract with someone you’ve never met? Would you agree to lend money to some farmer in
Ethiopia? Would you become an investor in a minority-run newspaper in a war zone? Would you go to the hassle
of writing up a legal binding contract for a $5 dollar purchase over the internet?

The answer is no for most of these questions, the reason being that a contract requires a large infrastructure:
sometimes you need a working trust relationship between the two parties, sometimes you rely on a working legal
system, police force and lawyer costs.

In Ethereum you don’t need any of that: if all the requisites to the contract can be put in the blockchain then they
will, in a trustless environment for almost no cost.

Instead of thinking of moving your current contracts to the blockchain, think of all the thousand little contracts
that you would never agree to simply because they weren’t economically feasible or there was not enough legal
protection..

DAO

Here is just one example: imagine you own a small business with your friends. Lawyers and accountants are
expensive, and trusting a single partner to oversee the books can be a source of tension (even an opportunity for
fraud). Complying strictly with a system in which more than one partner oversees the books can be trying and is
subject to fraud whenever the protocol isn’t followed exactly.

Using a smart contract, ownership in your company and terms for the disbursal of funds can be specified at the
outset. The smart contract can be written such that it is only changeable given the approval of a majority of owners.
Smart contracts like these will likely be available as open source software, so you won’t even need to hire your
own programmer instead of an accountant/lawyer.

A smart contract like this scales instantly. A couple of teenagers can split revenue from a lemonade stand just as
transparently as a sovereign wealth fund can disburse funds to the hundred million citizens who are entitled to it.
In both cases the price of this transparency is likely to be fractions of a penny per dollar.

1.1.5 History of Ethereum

For a recent historical account, see Taylor Gerring’s blogpost

Inception

Ethereum was initially described by Vitalik Buterin in late 2013 as a result of his research and work in the Bitcoin
community. Shortly thereafter, Vitalik published the Ethereum white paper, where he describes in detail the tech-
nical design and rationale for the Ethereum protocol and smart contracts architecture. In January 2014, Ethereum
was formally announced by Vitalik at the The North American Bitcoin Conference in Miami, Florida, USA.

Around that time, Vitalik also started working with Dr. Gavin Wood and together co-founded Ethereum. By
April 2014, Gavin published the Ethereum Yellow Paper that would serve as the technical specification for the

8 Chapter 1. Contents

https://www.youtube.com/watch?v=Fjhe0MVRHO4
https://www.youtube.com/watch?v=U_LK0t_qaPo
https://www.youtube.com/watch?v=GJGIeSCgskc
https://blog.ethereum.org/2016/02/09/cut-and-try-building-a-dream/
http://vbuterin.com/ethereum.html
https://github.com/ethereum/yellowpaper

Ethereum Classic Documentation, Release 0.1

Ethereum Virtual Machine (EVM). By following the detailed specification in the Yellow Paper, the Ethereum
client has been implemented in seven programming languages (C++, Go, Python, Java, JavaScript, Haskell, Rust),
and has resulted in better software overall.

¢ Ethereum launches Cryptocurrency 2.0 network - Coindesk article of 2014 Jan on the beginnings

¢ Ethereum announcement on bitcointalk Vitalik’s original announcement to the bitcoin community. Forum
thread with 5000 replies.

The Ethereum Foundation and the ether presale

In addition to developing the software for Ethereum, the ability to launch a new cryptocurrency and blockchain
requires a massive bootstrapping effort in order to assemble the resources needed to get it up and running. To
kickstart a large network of developers, miners, investors, and other stakeholders, Ethereum announced its plan to
conduct a presale of ether tokens, the currency unit of Ethereum. The legal and financial complexities of raising
funds through a presale led to the creation of several legal entities, including the Ethereum Foundation (Stiftung
Ethereum) established June 2014 in Zug, Switzerland.

Beginning in July 2014, Ethereum distributed the initial allocation of ether via a 42-day public ether presale,
netting 31,591 bitcoins, worth $18,439,086 at that time, in exchange for about 60,102,216 ether. The results of the
sale were initially used to pay back mounting legal debts and also for the months of developer effort that had yet
to be compensated, and to finance the ongoing development of the Ethereum.

* Launching the ether sale - original official announcement on the Ethereum blog
» Concise information-rich stats page about the presale by (since then inactive) Ether.Fund
* Overview: Ethereum’s initial public sale - Blogpost by slacknation - all stats about the ether presale

¢ Terms and Conditions of the Presale

ETH/DEV and Ethereum development

Following the successful ether presale, Ethereum development was formalized under a non-for-profit organization
called ETH DEV, which manages the development of Ethereum under contract from Ethereum Suisse — with
Vitalik Buterin, Gavin Wood, and Jeffrey Wilcke as the 3 directors of the organization. Developer interest in
Ethereum grew steadily throughout 2014 and the ETH DEV team delivered a series of proof-of-concept (PoC)
releases for the development community to evaluate. Frequent posts by ETH DEV team on the the Ethereum blog
also kept the excitement and momentum around Ethereum going. Increasing traffic and growing user-base on both
the Ethereum forum and the ethereum subreddit testified that the platform is attracting a fast-growing and devoted
developer community. This trend has been continuing to this very day.

DEVCON-0

In November 2014, ETH DEV organized the DEVCON-0 event, which brought together Ethereum developers
from around the world to Berlin to meet and discuss a diverse range of Ethereum technology topics. Several of the
presentations and sessions at DEVcon-0 would later drive important initiatives to make Ethereum more reliable,
more secure, and more scalable. Overall, the event galvanized developers as they continued to work towards the
launch of Ethereum.

* DEVCON-O0 talks youtube playlist
e DEVCON-O0 reddit post
* Gav’s DEV update mentioning DEVCON-0

* DEVcon-0 recap blog post

1.1. Introduction 9

http://www.coindesk.com/ethererum-launches-cryptocurrency-2-0-network/
https://bitcointalk.org/index.php?topic=428589.0
https://blog.ethereum.org/2014/07/22/launching-the-ether-sale/
http://ether.fund/market
http://ether.fund/
https://medium.com/@slacknation/overview-ethereum-s-initial-public-sale-563c05e95501
https://www.ethereum.org/pdfs/TermsAndConditionsOfTheEthereumGenesisSale.pdf
https://blog.ethereum.org
https://blog.ethereum.org/2014/12/05/d%CE%BEvcon-0-recap/
https://www.youtube.com/watch?v=_BvvUlKDqp0&list=PLJqWcTqh_zKEjpSej3ddtDOKPRGl_7MhS
https://www.reddit.com/r/ethereum/comments/2nle7m/community_update_whats_going_on_devcon0/
https://blog.ethereum.org/2014/11/18/gavs-d%CE%BEv-update-iii/
https://blog.ethereum.org/2014/12/05/d%CE%BEvcon-0-recap/

Ethereum Classic Documentation, Release 0.1

DEVgrants program

In April 2015, the DEVgrants program was announced, which is a program that offers funding for contributions
both to the Ethereum platform, and to projects based on Ethereum. Hundreds of developers were already con-
tributing their time and thinking to Ethereum projects and in open source projects. This program served to reward
and support those developers for their contributions. The DEVgrants program continues to operate today and
funding of the program was recently renewed in January 2016.

e DEVgrants initial announcement

¢ Announcement of new funding at DEVCON-1

e DEVgrants public gitter room

e DEVgrants talk at DEVCON-1 by Wendell Davis on YouTube

Olympic testnet, bug bounty and security audit

Throughout 2014 and 2015 development went through a series of proof of concept releases leading to the 9th
POC open testnet, called Olympic. The developer community was invited to test the limits of the network and
a substantial prize fund was allocated to award those holding various records or having success in breaking the
system in some way or other. The rewards were announced officially a month after the live release.

In early 2015, an Ethereum Bounty Program was launched, offering BTC rewards for finding vulnerabilities in any
part of the Ethereum software stack. This has undoubtedly contributed to the reliability and security of Ethereum
and the confidence of the Ethereum community in the technology. The bounty program is currently still active and
there is no end date planned.

The Ethereum security audit began at the end of 2014 and continued through the first half of 2015. Ethereum
engaged multiple third party software security firms to conduct an end-to-end audit of all protocol-critical compo-
nents (Ethereum VM, networking, Proof of Work). The audits uncovered security issues that were addressed and
tested again and as a result ultimately led to a more secure platform.

* Olympic testnet prerelease - Vitalik’s blogpost detailing olympic rewards

* Olympic rewards announced - Vitalik’s blogpost detailing the winners and prizes
* Bug bounty program launch

 Ethereum Bounty Program website

* Least Authority audit blogpost - with links to the audit report

* Deja Vu audit blogpost

The Ethereum Frontier launch

The Ethereum Frontier network launched on July 30th, 2015, and developers began writing smart contracts and
decentralized apps to deploy on the live Ethereum network. In addition, miners began to join the Ethereum network
to help secure the Ethereum blockchain and earn ether from mining blocks. Even though the Frontier release is the
first milestone in the Ethereum project and was intended for use by developers as a beta version, it turned out to
be more capable and reliable than anyone expected, and developers have rushed in to build solutions and improve
the Ethereum ecosystem.

See also:
¢ Original announcement of the release scheme by Vinay Gupta
 Frontier is coming - Frontier launch announcement by Stephan Tual
* Frontier launch final steps - Follow-up post to announcement
* Ethereum goes live with Frontier launch

¢ The frontier website

10 Chapter 1. Contents

https://blog.ethereum.org/2015/04/07/devgrants-help/
https://blog.ethereum.org/2015/04/07/devgrants-help/
https://blog.ethereum.org/2016/01/08/d%CE%BEvgrants-update-new-funding/
https://gitter.im/devgrants/public
https://www.youtube.com/watch?v=4jGqmlA4KEY
https://blog.ethereum.org/2015/05/09/olympic-frontier-pre-release/
https://blog.ethereum.org/2015/08/26/olympic-rewards-announced/
http://bounty.ethereum.org/
https://blog.ethereum.org/2015/05/09/olympic-frontier-pre-release/
https://blog.ethereum.org/2015/08/26/olympic-rewards-announced/
https://blog.ethereum.org/2015/03/20/juttas-update-bug-bounty-program-security-audit/
http://bounty.ethereum.org/
https://blog.ethereum.org/2015/07/07/know-ethereum-secure/
http://www.dejavusecurity.com/blog/2015/7/23/deja-vu-security-assists-in-ethereum-release
https://blog.ethereum.org/2015/03/03/ethereum-launch-process
https://blog.ethereum.org/2015/07/22/frontier-is-coming-what-to-expect-and-how-to-prepare
https://blog.ethereum.org/2015/07/27/final-steps/
https://blog.ethereum.org/2015/07/30/ethereum-launches
https://web.archive.org/web/20160207033817/https://ethereum.org/

Ethereum Classic Documentation, Release 0.1

DEVCON-1

The second developers’ conference DEVCON-1 took place in the city of London at the beginning of November
2015. The 5-day event featured more than 100 presentations, panel discussions and lightning talks, attracted more
than 400 participants, a mix of developers, entrepreneurs, thinkers, and business executives. The talks were all
recorded and are freely available

The presence of large companies like UBS, IBM and Microsoft clearly indicated enterprise interest in the tech-
nology. Microsoft announced that it would offer Ethereum on its new Blockchain as a Service offering on the
Microsoft Azure cloud platform. In conjunction with DEVCON-1, this announcement will be remembered as the
moment when blockchain technology became mainstream, with Ethereum at the center of it.

* DEVCON-1 talks Youtube playlist

¢ DEVCON-1 website full listing of presentations with links to the slides if available.

History resources

* a simple graphical timeline

1.1.6 Community

Please choose your forum wisely when starting a discussion or asking a question, help keep our various forums
clean and tidy.

Reddit

The Ethereum classic subreddit is the most inclusive Ethereum classic forum, where most of the community
discussion is happening and where core devs are also active. This is your forum of choice for generic discussion
of news, media coverage, announcements, brainstorming. In general all things Ethereum relevant to the wider
community.

Strictly no price discussion.

Also, this is not the ideal place to ask for hands-on help or post questions you expect there are clear immediate
answers to (use Gitter Rooms (old) and Stack Exchange (old) for these, respectively).

Read the Ethereum classic subreddit rules before posting.
Further specialised subreddits:
* /r/Ethereum- Ether hard-fork discussion
 /t/EthTrader - Ether trading, price and market
* /t/EtherMining - Ether mining discussion
e /r/Ethmarket - Marketplace for individuals looking to exchange goods and services for Ether

* /r/Ethinvestor - News and prospects for Ethereum investors. Following the long term trends in the Ethereum
marketplace.

e /r/ethereumism/ - a bit more ism, ostic, ical, ist and tinfoil hats, pyramids and crystal ball type of views - the
ethereal side of Ethereum

Ethereum Classic Wiki

¢ Ethereum Classic Wiki: ETHC wiki

1.1. Introduction 11

https://devcon.ethereum.org/
https://www.youtube.com/playlist?list=PLJqWcTqh_zKHQUFX4IaVjWjfT2tbS4NVk
https://azure.microsoft.com/en-us/blog/ethereum-blockchain-as-a-service-now-on-azure/
https://www.youtube.com/playlist?list=PLJqWcTqh_zKHQUFX4IaVjWjfT2tbS4NVk
https://devcon.ethereum.org/
http://ethereumtimeline.org/
https://www.reddit.com/r/ethereumclassic/
http://www.reddit.com/r/ethereumclassic/comments/3auc97/ethereum_subreddit_rules/
https://www.reddit.com/r/Etherum/
https://www.reddit.com/r/EthTrader/
https://www.reddit.com/r/EtherMining/
https://www.reddit.com/r/ethmarket/
https://www.reddit.com/r/Ethinvestor/
https://www.reddit.com/r/ethereumism/
http://ethcwiki.org/index.php?title=Main_Page

Ethereum Classic Documentation, Release 0.1

Telegram

* Ethereum Classic (general discussion): @ethclassic

¢ Ethereum Classic Dev: @etcdev

Slack

* https://ethereumclassic.slack.com/

Ethereum Improvement Proposals (EIPs)

The EIP scheme aims to be a framework and largely informal business process coordinating improvements to the
protocols. People should first propose their idea as an issue or pull request to the EIPs repository. After basic
filtering, the proposal will receive a number and is published in draft form. For an EIP to become Active it will
require the mutual consent of the community. Those proposing changes should consider that ultimately consent
may rest with the consensus of the Ethereum users. For discussion of EIPs, use the ‘gitter channel for EIP
discussions®_.

* EIP guidelines and sample EIP
* EIP template
* EIP repository and README

Chinese Community

* WeChat group: ETCClassic

* QQ group: 361470220

* Weibo Group: http://weibo.com/ethereumclassic/
¢ Chinese Wiki: http://assembly.io/

8btc: http://8bct.com/forum-126-1.html

Russian Community

* https://bitcointalk.org/index.php?topic=1563268
e https://bitcointalk.org/index.php?topic=1563328

* https://ethclassic.ru

Indonesian Community

* https://bitcointalk.org/index.php?topic=1563400

Gitter Rooms (old)
Gitter is our forum of choice for daily chat. It is the virtual coworking space where devs hang out, so it is where
you can get quick help and a bit of handholding if needed.

Gitter uses Github accounts, offers Github integration (notification of pull requests etc), private channels, provides
markdown formatting, and more.

Most Gitter channels are organised around particular repositories, or generic topics like research or governance.
Please choose the appropriate room and keep discussions on topic.

See the full list of gitter rooms for the Ethereum organisation. Below is the list of active public channels:

12 Chapter 1. Contents

https://ethereumclassic.slack.com/
https://github.com/ethereumproject/EIPs
https://github.com/ethereumproject/EIPs/blob/master/eip-X.mediawiki
https://github.com/ethereumproject/EIPs
http://weibo.com/ethereumclassic/
http://assembly.io
http://8bct.com/forum-126-1.html
https://bitcointalk.org/index.php?topic=1563268
https://bitcointalk.org/index.php?topic=1563328
https://ethclassic.ru
https://gitter.im/orgs/ethereum/rooms

Ethereum Classic Documentation, Release 0.1

* go-ethereum - about geth (and tools related to the go implementation)
* cpp-ethereum - about eth (and tools related to the C++ implementation)
* web3.js - about web3.js, Ethereum JavaScript API library

¢ Solidity - The Solidity Contract-Oriented Programming Language

* serpent - The Serpent language for contract development

» mist - GUI dapp browser, official wallet app

* light-client - about light client and the LES protocol

* research - Ethereum research

* governance - about dev governance

» whisper - anonymous datagram publishing

» swarm - decentralised content storage and distribution network

* EIPs - discussion of Ethereum Improvement Proposals (EIPs)

* ethereumjs-lib - a JavaScript library of core Ethereum functions

e devp2p - DEV’s p2p network protocol & framework

Stack Exchange (old)
The Ethereum Classic Stack Exchange is part of the StackExchange network of Q&A communities. StackEx-
change is a free Q&A site where all the questions and answers are preserved for posterity.

This is the best place to ask technical questions. Help your fellow etherians by answering questions and collect
reputation points.

Obsolete

Skype

Some community discussion fora still use skype rooms, but we would like to move away from that and encourage
people to use gitter or slack.

Ethereum Forum

Stephan Tual’s legendary Ethereum Forum is no longer maintained and likely to be decommissioned soon. We
encourage people to use one of the recommended alternatives listed above.

1.1.7 The Ethereum Foundation

The Ethereum Foundation is a non-profit organization registered in Switzerland, and has the purpose of managing
the funds that were raised from the Ether Sale in order to best serve the Ethereum and decentralized technology
ecosystem.

Founded July 2014 in Switzerland, Stiftung Ethereum’s mission is the promotion of developments of new tech-
nologies and applications, especially in the fields of new open and decentralized software architectures.

It is the aim that decentralized and open technologies will be developed, nurtured, promoted and maintained. A
dominating, but not exclusive, focus is set on the promotion of the development of the Ethereum Protocol and
the relevant technology to it as well as the promotion and support of applications using the Ethereum technology
or protocol. Stiftung Ethereum will additionally support and advocate for a decentralized Internet in a variety of
forms.

1.1. Introduction 13

https://gitter.im/ethereum/go-ethereum
https://gitter.im/ethereum/cpp-ethereum
https://gitter.im/ethereum/web3.js
https://gitter.im/ethereum/Solidity
https://gitter.im/ethereum/serpent
https://gitter.im/ethereum/mist
https://gitter.im/ethereum/light-client
https://gitter.im/ethereum/research
https://gitter.im/ethereum/governance
https://gitter.im/ethereum/whisper
https://gitter.im/ethereum/swarm
https://gitter.im/ethereum/EIPs
https://gitter.im/ethereum/ethereumjs-lib
https://gitter.im/ethereum/devp2p
http://ethereum.stackexchange.com/
http://gitter.im
http://slack.com
https://forum.ethereum.org/

Ethereum Classic Documentation, Release 0.1

Find out about more about the Foundation Management Team on the website

Ethereum Foundation’s faces to the community

¢ Official Homestead website - main entrypoint
e Reddit - see Community

* Blog

o Twitter

* Youtube

 Facebook - largely unused

e Email - use if you must

Official communication from the Ethereum foundation most often comes in the form of a comprehensive blogpost
on the Ethereum blog. Some of the posts there are technical, some organisational, some personal. All blog posts
are announced on Twitter and Reddit.

The foundation Youtube channel hosts our videos, including all talks of the developers conferences DEVCONO
and DEVCONI.

For community discussion forums, see Community.

1.1.8 Contributors

This documentation was built collectively by the Ethereum and the Ethereum classic community originally as part
of a project called the Homestead Documentation Initiative which was coordinated by:

* Viktor Trén (“zelig”)
* Hudson Jameson (“‘Souptacular™)

It was subsequently modified to fit the needs of the classic community with an initiative called the Classic Docu-
mentation Initiative which was coordinated by:

* Cody Burns (“dontpanicburns’)

We would like to thank everybody who helped in this effort for their contributions:

14 Chapter 1. Contents

https://ethereum.org/foundation
https://ethereum.org
http://www.reddit.com/r/ethereum
https://blog.ethereum.org/
http://twitter.com/ethereumproject
https://www.youtube.com/user/ethereumproject
https://www.facebook.com/ethereumproject
mailto:info@ethereum.org
https://blog.ethereum.org/
http://twitter.com/ethereumproject
http://www.reddit.com/r/ethereum
https://www.youtube.com/user/ethereumproject
https://www.reddit.com/r/ethereum/comments/45116k/call_to_action_homestead_documentation_initiative/
https://github.com/zelig
https://github.com/Souptacular
https://www.reddit.com/r/ethereumclassic/addredditlinkhere/
https://www.reddit.com/r/ethereumclassic/addredditlinkhere/
https://github.com/realcodywburns
https://github.com/ethereumclassic/classic-guide/graphs/contributors

Ethereum Classic Documentation, Release 0.1

s

9.
<

feel
Al
man

Ricardo de Azevedo Brandao

Santanu Barai
Brooks Boyd
RJ Catalano

Joseph Chow

Keri Clowes

Frangois Deppierraz

Bertie Dinneen

Erik Edrosa

Andrey Fedorov
Rocky Fikki
Alex Fisher

Enrique Fynn

Arno Gaboury

Taylor Gerring

Dave Hoover

Joél Hubert

Makoto Inoue

. Introduction 15

https://github.com/programonauta
https://github.com/0mkara
https://onename.com/midnight
https://onename.com/VoR0220
https://github.com/ethers
http://github.com/kclowes
https://github.com/ctrlaltdel
https://github.com/bdinn1
https://github.com/OrangeShark
https://github.com/anfedorov
https://github.com/rfikki
https://github.com/alexfisher
https://github.com/enriquefynn
http://github.com/gabx
https://github.com/tgerring
https://github.com/redsquirrel
https://github.com/jmahhh
https://github.com/makoto

Ethereum Classic Documentation, Release 0.1

And these pseudonymous contributors:

Keith Irwin
Matthias Kippler
Bas van Kervel
Michael Kilday
Chandra Kumar
Guangmian Kung
Hugh Lang

Yann Levreau
Roman Mandeleil
Kévin Maschtaler
Andrew Mazzola
Dominik Miszkiewicz
John Mooney
Chris Peel

Craig Polley

Colm Ragu
Laurent Raufaste
Christian Reitwiessner
Josh Stark

Scott Stevenson
Bob Summerwill
Alex van de Sande
Paul Schmitzer
Afri Schoedon
Sudeep Singh
Giacomo Tazzari
Ben Tannenbaum
Dean Alain Vernon
Paul Worrall

Luca Zeug
Weiyang Zhu

Will Zeng

12v
c0d3inj3cT
ijcoebru
LucaTony
madhancr

mWo

16

Chapter 1. Contents

https://github.com/keith24
https://github.com/mttkay
https://github.com/bas-vk
https://github.com/taoteh1221
https://github.com/klmoney
https://github.com/gmkung
https://github.com/hughlang
https://github.com/yann300
https://github.com/romanman
https://github.com/Kmaschta
https://github.com/admazzola
https://github.com/dmiszkiewicz
https://github.com/mooneyj
https://github.com/christianpeel
https://github.com/polleykc
https://github.com/colm
https://github.com/lra
https://github.com/chriseth
https://github.com/jjmstark
https://github.com/ScottStevenson
https://github.com/bobsummerwill
https://github.com/alexvandesande
https://github.com/LiteBit
https://github.com/5chdn
https://github.com/c0d3inj3cT
http://github.com/giact
https://github.com/BenUsername
https://github.com/azulmarino
https://github.com/pjworrall
https://github.com/luclu
https://github.com/ZhuWeiyang
https://github.com/willzeng
https://github.com/12v
http://github.com/c0d3inj3cT
https://github.com/ijcoe6ru
https://github.com/LucaTony
https://github.com/madhancr
https://github.com/moneroexamples

Ethereum Classic Documentation, Release 0.1

¢ Omkara
e tflux99

* xyzether

1.2 Ethereum Clients

1.2.1 Choosing a client
Why are there multiple Ethereum clients?

The Ethereum clients are very analogous to a Java VM or .NET runtime.

They enable you to execute “Ethereum programs” on your computer. They are implemented to a written specifi-
cation (the Yellow Paper) and by design are interoperable and somewhat “commodity”.

From the earlier days of the project there have been multiple interoperable client implementations across a range
of different operating systems. That client diversity is a huge win for the ecosystem as a whole. It lets us verify
that the protocol is unambiguous. It keeps the door open for new innovation. It keeps us all honest. However, it
can be very confusing for end-users, because there is no universal “Ethereum Installer” for them to use.

As we enter the Homestead phase, the Go client is very, very dominant, but it hasn’t always been that way, and
won’t necessarily be that way in the future. All of the clients except ethereumH have Homestead-compatible
releases. The table below contains links to the latest release.

Client Language | Developers Latest release

go-ethereum Go Ethereum Foundation | go-ethereum-v1.4.10

Farity Rust Ethcore Parity-v1.2.2

cpp-ethereum | C++ Ethereum Foundation | cpp-ethereum-v1.3.0

pyethapp Python Ethereum Foundation | pyethapp-v1.3.2

ethereumjs-lib | Javascript Ethereum Foundation | ethereumjs-lib-v3.0.0

Ethereum(J) Java <ether.camp> ethereumJ-v1.3.0-RC5-DaoHardFork
ruby-ethereum | Ruby Jan Xie ruby-ethereum-v0.9.3

ethereumH Haskell BlockApps no Homestead release yet

1.2.2 Installing a Client

There are a number of “official” clients whose development has been funded from the resources administered by
the Ethereum Foundation. There are also various other clients which have been built by the community or by other
commercial entities.

Read more about the specific clients in the specific client sections in this chapter.

What should I install on my desktop/laptop?

If you have a laptop or desktop machine, you should probably just install the Ethereum Wallet and you are done.
* Download the latest Ethereum Wallet ZIP from Github.
* Unzip wherever you like
¢ Click on the executable (Ethereum-Wallet, Ethereum-Wallet or Ethereum-Wallet.app)
* The block-chain will be downloaded

The Ethereum Wallet is a “single dapp” deployment of the Mist Browser which will be the centerpiece of the
Metropolis phase of development, which comes after Homestead.

Mist comes with bundled go-ethereum and cpp-ethereum binaries and if you are not running a command-line
Ethereum client when Mist starts then it will start running one of the bundles clients for you.

1.2. Ethereum Clients 17

https://github.com/0mkara
https://github.com/tflux99
https://github.com/xyzether
https://github.com/ethereum/yellowpaper
https://ethereum.org/foundation
https://github.com/ethereum/go-ethereum/releases/tag/v1.4.10
https://ethcore.io/
https://github.com/ethcore/parity/releases/tag/v1.2.2
https://ethereum.org/foundation
https://github.com/bobsummerwill/cpp-ethereum/releases/tag/v1.3.0
https://ethereum.org/foundation
https://github.com/ethereum/pyethapp/releases/tag/v1.3.2
https://ethereum.org/foundation
https://github.com/ethereumjs/ethereumjs-lib/releases/tag/v3.0.0
http://www.ether.camp
https://github.com/ethereum/ethereumj/releases/tag/1.3.0-RC5-DaoHardFork
https://github.com/janx/
https://rubygems.org/gems/ruby-ethereum/versions/0.9.3
http://www.blockapps.net/
https://github.com/ethereum/mist
https://github.com/ethereum/mist/releases/latest

Ethereum Classic Documentation, Release 0.1

If you want to interact with Ethereum on the command-line, and to take advantage of the Javascript console then
you will want to install one of the client applications directly, as well as Mist.

go-ethereum and cpp-ethereum are the best place to start, because they have both been under development since
the start of the project, have passed security audits, work for all platforms and have The Ethereum Foundation
resources assigned to their ongoing maintenance and support.

* Follow the Installing binaries instructions for cpp-ethereum
* For go-ethereum, just unzip the released binaries
Parity is gaining in popularity fast.
Beyond that, of course, it is all a matter of personal preference. Try them all :-)

If you want to do mining then Mist will not be sufficient. Check out the Mining section.

What should | install on my mobile/tablet?

We are at the very beginning of our support for mobile devices. The Go team are publishing experimental i0OS
and Android libraries, which some developers are using to start bootstrapping mobile applications, but there are
not yet any mobile Ethereum clients available.

The main hinderance to the use of Ethereum on mobile devices is that the Light Client support is still incomplete.
The work which has been done is off in a private branch, and is only available for the Go client. doublethinkco
will be starting development of Light Client for the C++ client in the coming months, following grant funding.

Check out Syng.im, who were initially using ethereumj-personal based on Ethereum(J), but have recently flipped
to Geth cross-builds with Light Client.

What should I install on my SBC?

You have some choice here depending on your skill level, and what you are looking to do.
* Download a fully prepared image(link to page with detailed download & install instructions)

— If you are new to Ethereum AND SBC boards such as the Raspberry Pi then this is for you! Simply
download the image specific to the dev board you are working with, burn it to an SD card, boot your
device, and run Ethereum!

* Download a pre-compiled application(link to page with detailed download & install instructions)

— If you already have an SBC running and have a specific, preferred OS or setup that you want to keep,
then this is your best option! Depending on the platform, you can simply download the apropriate
executable, and with minimal linking of libraries and setting of PATH you can have Ethereum running
in your existing environment!

* Build from source using customizable scripts(link to page with more detail and individual SBC links to
https://github.com/ethembedded)

— Looking to perform a custom install? We have scripts available to compile from source “on device”.
Our scripts contain auto-install of dependencies as well as the client itself. This will allow you to

install a specific version of the Ethereum client(i.e.-“develop”, “master”, etc.), compile your own
forked version of a client, and generally play around with the intracacies of the build process.

18 Chapter 1. Contents

https://github.com/ethereum/go-ethereum/releases
http://syng.io
https://github.com/syng-im/ethereumj-personal
https://github.com/ethembedded

Ethereum Classic Documentation, Release 0.1

1.2.3 cpp-ethereum

Quick Start

The Github project for the Ethereum C++ client is https://github.com/ethereum/cpp-ethereum/

As of right now, though (only for the v1.3.0 release), the canonical mainline is at
https://github.com/bobsummerwill/cpp-ethereum/tree/merge_repos

Prior to the v1.3.0 release and for several months before, the canonical mainline was at
https://github.com/ethereum/webthree-umbrella

If you just want to install binaries then head to Installing binaries.

If you want to build from source then head to Building from source.

You can chat with the community and developers at cpp-ethereum-gitter

The developers have their in-depth conversations at cpp-ethereum-development-gitter

Please log any issues using the Github issue tracker.

cpp-ethereum is extremely portable and is used on a very broad range of platforms.

1.2. Ethereum Clients 19

https://github.com/ethereum/cpp-ethereum/
https://github.com/bobsummerwill/cpp-ethereum/tree/merge_repos
https://github.com/ethereum/webthree-umbrella
https://gitter.im/ethereum/cpp-ethereum
https://gitter.im/ethereum/cpp-ethereum-development
http://github.com/ethereum/webthree-umbrella/issues

Ethereum Classic Documentation, Release 0.1

Details

Project reboot

The project is going through a reboot under new leadership. At the time of writing, we have a number of moving
parts. Please bear with us!

We simplified the project naming at Homestead, although some naming shadows of the past still linger. There was
a further C++ development update from Christian in May 2016.

The next big step is our pending git repository reorganization, which will move our code back into the cpp-
ethereum repository.

We are also working toward re-licensing the codebase as Apache 2.0, which would be the culmination of a very
long-term plan to liberalize the core. An effort was begun in 2015 to re-license the cpp-ethereum core as MIT, but it
was never completed. This is a revival of that effort, especially with a view towards the potential for collaboration
with the Linux Foundation‘s Hyperledger project.

Current reality (squares are applications, circles are libraries):

Target refactoring:

History of the code

The C++ Ethereum project was initiated by Gavin Wood, the former CTO of the Ethereum Foundation, in Decem-
ber 2013. It is the second most popular of the clients, trailing a long way behind the dominant geth client, also
built by the Ethereum Foundation.

Many of the original C++ developers moved on to roles at Slock.it and Ethcore in late 2015 and early 2016
following a 75% cut in funding for C++ development. Those cuts were part of a broader effort to bring Foundation
costs under control, and they happened prior to the recent spike in ETH value which has put the Foundation in a
much more comfortable financial position.

See Contributors for the full list of everybody who has worked on the code.

Portability

The Ethereum C++ client code is exceedingly portable, and is being successfully used on a huge range of different
operating systems and devices.

We continue to expand our range and are very open to pull-requests which add support for additional operating
systems, compilers or devices.

Operating systems verified as working

¢ Linux

Alpine Linux
Arch Linux

Debian 8 (Jessie)
Fedora 20

Fedora 21

Fedora 22
openSUSE Leap 42.1

Raspbian
Sailfish OS 2.0

20 Chapter 1. Contents

https://blog.ethereum.org/2016/02/12/ethereum-dev-update-c-roadmap/
https://github.com/ethereum/webthree-umbrella/issues/250
https://blog.ethereum.org/2016/05/04/c-dev-update-announcing-remix/
https://github.com/ethereum/webthree-umbrella/issues/251
https://github.com/ethereum/cpp-ethereum
https://github.com/ethereum/cpp-ethereum
https://github.com/ethereum/webthree-umbrella/issues/530
https://tldrlegal.com/license/apache-license-2.0-(apache-2.0)
https://github.com/ethereum/wiki/wiki/Licensing
http://linuxfoundation.org
https://www.hyperledger.org
http://github.com/ethereum/webthree-umbrella
http://gavwood.com/
https://blog.ethereum.org/2016/01/11/last-blog-post/
https://github.com/ethereum/go-ethereum
http://slock.it
http://ethcore.io
https://blog.ethereum.org/2016/01/07/2394/
https://github.com/ethereum/webthree-umbrella/wiki/Contributors

Ethereum Classic Documentation, Release 0.1

Ubuntu 14.04 (Trusty)
— Ubuntu 14.10 (Utopic)
— Ubuntu 15.04 (Vivid)
— Ubuntu 15.10 (Wily)
— Ubuntu 16.04 (Xenial)
— Ubuntu Touch
— Ubuntu 15.04 MATE
* BSD
— FreeBSD
+ OSX
— OS X Yosemite (10.10)
— OS X El Capitan (10.11)
— OS X 10.10 (Yosemite Server 4.0)
— OS X 10.11 (Yosemite Server 5.0)
— 0OS X 10.11 (Yosemite Server 5.1)
* Windows

Windows 7

Windows 8

Windows 8.1

Windows 10
Windows Server 2012 R2

Operating systems - work in progress

e Linux
— Maemo
- MeeGo
— Tizen
* BSD
- i0S
- tvOS
— WatchOS
* Android

Devices verified as working
 All varieties of desktop and laptop devices (Windows, OS X, Desktop Linux)
— 64-bit (with rebuilt binaries)
— 32-bit (not official supported, but they work)
¢ Smartphones

— Linux

1.2. Ethereum Clients 21

Ethereum Classic Documentation, Release 0.1

% Jolla Phone

* Meizu MX4 Ubuntu Edition

+ Nexus 5 (SailfishOS 2.0)

* SBCs
— Linux

* BeagleBone Black

* QOdroid XU3

Project C.H.L.P.

+ Raspberry Pi Model A

* Raspberry Pi Model B+

+ Raspberry Pi Zero

% Raspberry Pi 2

% Raspberry Pi 3

+ Wandboard Quad

Devices - work in progress
* Smartwatches
— Linux
* Samsung Gear S2
- BSD
* Apple Watch
* Smartphones
— Linux
+ Nokia N9 (MeeGo)
+ Nokia N900 (Meemo)
* Samsung Z1
% Samsung Z3
— Android
* Samsung Galaxy S3
* Samsung Galaxy S4
- BSD
* 1Phone 3GS
* iPhone 5
¢ Developer phones
— Linux
* Samsung RD-210
+* Samsung RD-PQ
% Samsung TM1
* Tablets

22

Chapter 1. Contents

Ethereum Classic Documentation, Release 0.1

— Android
* Samsung Galaxy Tab S 10.5
+ Nexus 7

- BSD
* iPad Air 2

* SBCs

— Linux
% DragonBoard 410c
Intel Curie
+ Intel Edison

Intel NUC

*

* Minnowboard Max

Odroid XU4

*

Installing binaries

The cpp-ethereum development team and the broader Ethereum community publish binary releases in many dif-
ferent forms for a variety of platforms. This aims to be a complete list of those releases.

If you are aware of other third-party packaging efforts, please let us know on the cpp-ethereum gitter channel, and
we will add them to this list.

Ubuntu PPA (Personal Package Archive) We have set up PPA instances for the following Ubuntu versions:
e Ubuntu Trusty Tahr (14.04)
e Ubuntu Utopic Unicorn (14.10)
e Ubuntu Vivid Vervet (15.04)
e Ubuntu Wily Werewolf (15.10)
¢ Ubuntu Xenial Xerus (16.04)

We only support 64-bit builds. It may be possible to get the client working for Ubuntu 32-bit, by building from
source and disabling EVMIIT and maybe other features too. We might accept pull-requests to add such support,
but we will not put any of our development time into supporting Ubuntu 32-bit builds.

Installing the “eth” command-line tool WARNING: The ethereum-qt PPA will upgrade your system-wide
Qt5 installation, from 5.2 on Trusty and 5.3 on Utopic, to 5.5.

For the latest stable version:

sudo add-apt-repository ppa:ethereum/ethereum—-gt
sudo add-apt-repository ppa:ethereum/ethereum
sudo apt-get update

sudo apt-get install cpp-ethereum

If you want to use the cutting edge developer version:

sudo add-apt-repository ppa:ethereum/ethereum-gt
sudo add-apt-repository ppa:ethereum/ethereum
sudo add-apt-repository ppa:ethereum/ethereum-dev
sudo apt-get update

sudo apt-get install cpp-ethereum

1.2. Ethereum Clients 23

http://gitter.im/ethereum/cpp-ethereum
https://wiki.ubuntu.com/TrustyTahr
https://wiki.ubuntu.com/UtopicUnicorn
https://wiki.ubuntu.com/VividVervet
https://wiki.ubuntu.com/WilyWerewolf
https://wiki.ubuntu.com/XenialXerus

Ethereum Classic Documentation, Release 0.1

Installing the Mix IDE The Mix IDE is shipped on Ubuntu as part of the developer PPA (above). So follow the
steps directly above, and then also do:

sudo apt-get install mix-ide
mix-ide

Windows installer We generate Windows installers for each release.

These should work on Windows 7, Windows 8/8.1, Windows 10 and Windows Server 2012 R2, though our auto-
mated builds are all built on a Windows 8.1 host machine.

If you hit runtime errors complaining about missing msver120.dll or msvep120.dll files then please install the
Visual C++ Redistributable Packages for Visual Studio 2013 from Microsoft.

We only support 64-bit builds.

It may be possible to get the client working for Windows 32-bit, by building from source and disabling EVMIJIT
and maybe other features too. We might accept pull-requests to add such support, but we will not put any of our
development time into supporting Windows 32-bit builds.

The vast majority of individuals using Windows have 64-bit hardware now.

Windows Chocolatey NuGet packages We aren’t generating Chocolatey packages at the time of writing,
though we have done so in the past.

For anybody who isn’t already familiar with the technology, this is essentially apt-get for Windows - a global silent
installer for tools.

We would like to support Chocolatey again in the near future for all the same reasons we support Homebrew on
OS X and have PPAs for Ubuntu. For technically competent users, doing command-line operations like so would
be very convenient:

choco install cpp-ethereum
choco update cpp-ethereum

OS X DMG (disk image) We generate OS X disk images for each release.
We only support the two most recent OS X versions:

¢ OS X Yosemite (10.10)

* OS X El Capitan (10.11)
We only support 64-bit builds.

If your system does not support either of these OS X versions then you are out of luck. Sorry!

OS X Homebrew packages We generate Homebrew packages within our automated build system.
We only support the two most recent OS X versions:
¢ OS X Yosemite (10.10)
* OS X El Capitan (10.11)
We only support 64-bit builds.
If your system does not support either of these OS X versions then you are out of luck. Sorry!

All OS X builds require you to install the Homebrew package manager before doing anything else. Here’s how to
uninstall Homebrew, if you ever want to start again from scratch.

To install the Ethereum C++ components from Homebrew, execute these commands:

24 Chapter 1. Contents

https://github.com/ethereum/mix
https://github.com/ethereum/webthree-umbrella/releases
http://ethbuilds.com
http://ethbuilds.com
https://www.microsoft.com/en-ca/download/details.aspx?id=40784
https://chocolatey.org/
https://github.com/ethereum/webthree-umbrella/issues/345
https://github.com/ethereum/webthree-umbrella/releases
https://en.wikipedia.org/wiki/OS_X_Yosemite
https://en.wikipedia.org/wiki/OS_X_El_Capitan
https://en.wikipedia.org/wiki/OS_X_Yosemite
https://en.wikipedia.org/wiki/OS_X_El_Capitan
http://brew.sh
https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#how-do-i-uninstall-homebrew

Ethereum Classic Documentation, Release 0.1

brew update

brew upgrade

brew tap ethereum/ethereum
brew install cpp-ethereum

brew linkapps cpp-ethereum

Or...

brew install cpp-ethereum --with-gui

... if you want to build AlethZero and the Mix IDE too.

To start the applications, type one of these commands in a Terminal window:

open /Applications/AlethZero.app
open /Applications/Mix.app
eth

Here is the Homebrew Formula which details all the supported command-line options.

Raspberry Pi, Odroid, BeagleBone Black, Wandboard John Gerryts of EthEmbedded builds binary images
for a variety of SBCs at major milestones, in addition to testing and maintaining build scripts for these devices.
EthEmbedded was a devgrant recipient in May 2015. He builds binaries for both eth and geth.

Here are the Homestead binaries from EthEmbedded

Linux ARM cross-builds for mobile, wearables, SBCs Bob Summerwill, of doublethinkco cross-builds ARM
binaries which work on a very broad variety of hardware, from mobile and wearables Linux distros (Sailfish
OS, Tizen OS, Ubuntu Touch) to the same SBCs which EthEmbedded target - and more. doublethinkco was a
BlockGrantX recipient in Feb 2016.

See the cpp-ethereum-cross README for a full matrix of platforms and known status.

Here are the cross-build binaries from doublethinkco: RELEASED — Cross-build eth binaries for Homestead.

ArchLinux User Repository (AUR) Arch Linux packages are community maintained by Afri Schoedon.
Check out the following packages on aur.archlinux.org.

¢ cthereum (stable, latest release)

* ethereum-git (unstable, latest develop)
To build and install the package, follow the AUR installing package instructions:

¢ Acquire the tarball which contains the PKGBUILD

* Extract the tarball

* Runmakepkg -sri assimple user in the directory where the files are saved

* Install the resulting package with pacman -U as superuser

You can also use AUR helpers like yaourt or pacaur to install the packages directly on your system.

Building from source

Overview The cpp-ethereum codebase is is mid-transition from several Git repositories which are all grouped
as sub-modules under the webthree-umbrella repo on Github back to cpp-ethereum.

As of right now (only for the v1.3.0 release), the canonical mainline is at:

https://github.com/bobsummerwill/cpp-ethereum/tree/merge_repos

1.2. Ethereum Clients 25

https://github.com/ethereum/alethzero
https://github.com/ethereum/wiki/wiki/Mix:-The-DApp-IDE
https://github.com/ethereum/homebrew-ethereum/blob/master/cpp-ethereum.rb
https://twitter.com/phonikg
http://ethembedded.com
https://twitter.com/EthEmbedded/status/601072825584103424
http://ethembedded.com/?page_id=102
http://ethembedded.com
http://bobsummerwill.com
http://doublethink.co
https://github.com/doublethinkco/webthree-umbrella-cross/releases
https://github.com/doublethinkco/webthree-umbrella-cross/releases
http://ethembedded.com
http://doublethink.co/2016/02/23/we-have-blockgrantx-funding/
https://github.com/doublethinkco/cpp-ethereum-cross
http://doublethink.co/2016/03/07/released-cross-build-eth-binaries-for-homestead/
https://github.com/5chdn
https://aur.archlinux.org/packages/?O=0&K=ethereum
https://aur.archlinux.org/packages/ethereum/
https://aur.archlinux.org/packages/ethereum-git/
https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_packages
https://wiki.archlinux.org/index.php/AUR_helpers
http://github.com/ethereum/webthree-umbrella
http://github.com/ethereum/cpp-ethereum
https://github.com/bobsummerwill/cpp-ethereum/tree/merge_repos

Ethereum Classic Documentation, Release 0.1

We use a common CMake build system to generate platform-specific build files, meaning that the workflow is
very similar whatever operating system you use:

* Install build tools and external packages (these are platform dependent)

¢ Clone the source code from the webthree-umbrella git repository

* Run CMake to generate a build file (makefile, Visual Studio solution, etc)
¢ Build it

Platform-specific instructions

Building for Linux NOTE - It may be possible to get the client working for Linux 32-bit, by disabling EVMIIT
and maybe other features too. We might accept pull-requests to add such support, but we will not put any of our
own development time into supporting Linux 32-bit builds.

Linux has a horror-show of distro-specific packaging system steps which are the first thing which we need to do
before we can start on Building from source. The sections below attempt to capture those steps. If you are using
as different distro and hit issues, please let us know.

Clone the repository To clone the source code, execute the following command:

git clone —-recursive https://github.com/bobsummerwill/cpp-ethereum.git
cd cpp-ethereum

git checkout merge_repos

git submodule update —--init

Installing dependencies (the easy way!) For the “Homecoming” release (v1.3.0) in July 2016 we added a new
“one-button” script for installing external dependencies, which identifies your distro and installs the packages
which you need. This script is new and incomplete, but is a way easier experience than the manual steps described
in the next section of this document. Give it a go! It works for Ubuntu and macOS and a few other distros already.
If you try it, and it doesn’t work for you, please let us know and we will prioritize fixing your distro!:

./install_deps.sh

Installing dependencies (distro-specific)

Installing dependencies for Ubuntu

Ubuntu Trusty Tahr (14.04) Steps:

sudo

sudo
sudo
sudo
sudo

sudo
wget
sudo
sudo

sudo
sudo
sudo
sudo

apt-add-repository ppa:george-edisonb55/cmake-3.x

apt—-get -y update

apt-get -y install language-pack-en-base
dpkg-reconfigure locales

apt-get -y install software-properties-common

add-apt-repository "deb http://llvm.org/apt/trusty/ llvm-toolchain-trusty-3.7 ma
-0 - http://llvm.org/apt/llvm-snapshot.gpg.key | sudo apt—-key add -
apt—-get -y update

apt—-get -y install 1llvm-3.7-dev

add-apt-repository -y ppa:ethereum/ethereum-qgt
add-apt-repository -y ppa:ethereum/ethereum
add-apt-repository -y ppa:ethereum/ethereum-dev
apt—-get -y update

26

Chapter 1. Contents

hin"

https://cmake.org/
https://gitter.im/ethereum/cpp-ethereum

Ethereum Classic Documentation, Release 0.1

sudo

sudo

sudo
sudo

apt—-get -y upgrade

apt—-get -y install build-essential git cmake libboost-all-dev libgmp-dev \
libleveldb-dev libminiupnpc-dev libreadline-dev libncurses5-dev \
libcurl4-openssl-dev libcryptopp-dev libmicrohttpd-dev libjsoncpp-dev \
libargtable2-dev libedit-dev mesa-common-dev ocl-icd-libopencll opencl-headers \
libgoogle-perftools-dev gtbase5-dev gt5-default gtdeclarativeb5-dev \
libgt5webkit5-dev libgt5webengine5-dev ocl-icd-dev libv8-dev libz-dev

apt-get -y install libjson-rpc-cpp-dev
apt-get -y install gml-module-gtquick-controls gml-module-gtwebengine

Ubuntu Utopic Unicorn (14.10) Steps:

sudo
sudo
sudo
sudo

sudo
wget
sudo
sudo

sudo
sudo
sudo
sudo
sudo

sudo

sudo
sudo

apt—-get -y update

apt—-get -y install language-pack-en-base
dpkg-reconfigure locales

apt—-get -y install software-properties-common

add-apt-repository "deb http://llvm.org/apt/utopic/ llvm-toolchain-utopic-3.7 m
-0 - http://llvm.org/apt/llvm-snapshot.gpg.key | sudo apt-key add -

apt—-get -y update

apt-get -y install 1llvm-3.7-dev

add-apt-repository -y ppa:ethereum/ethereum—-qgt
add-apt-repository -y ppa:ethereum/ethereum
add-apt-repository -y ppa:ethereum/ethereum-dev
apt—-get -y update

apt—-get -y upgrade

apt—-get -y install build-essential git cmake libboost-all-dev libgmp-dev \
libleveldb-dev libminiupnpc-dev libreadline-dev libncurses5-dev \
libcurl4-openssl-dev libcryptopp-dev libmicrohttpd-dev libjsoncpp-dev \
libargtable2-dev libedit-dev mesa-common-dev ocl-icd-libopencll opencl-headers \
libgoogle-perftools-dev gtbase5-dev gt5-default gtdeclarativeb5-dev \
libgt5webkit5-dev libgt5webengine5-dev ocl-icd-dev libv8-dev libz-dev

apt—-get -y install libjson-rpc-cpp-dev
apt—-get -y install gml-module-gtquick-controls gml-module-gtwebengine

hin"

Ubuntu Vivid Vervet (15.04) Steps:

sudo
sudo
sudo
sudo

sudo
wget
sudo
sudo

sudo
sudo
sudo
sudo
sudo

sudo

apt—-get -y update

apt-get -y install language-pack-en-base
dpkg-reconfigure locales

apt-get -y install software-properties-common

add-apt-repository "deb http://llvm.org/apt/vivid/ llvm-toolchain-vivid-3.7 maif
-0 - http://llvm.org/apt/llvm-snapshot.gpg.key | sudo apt—-key add -

apt—-get -y update

apt—-get -y install 1llvm-3.7-dev

add-apt-repository -y ppa:ethereum/ethereum—-qgt
add-apt-repository -y ppa:ethereum/ethereum
add-apt-repository -y ppa:ethereum/ethereum-dev
apt—-get -y update

apt—-get -y upgrade

apt—-get -y install build-essential git cmake libboost-all-dev libgmp-dev \
libleveldb-dev libminiupnpc-dev libreadline-dev libncurses5-dev \
libcurl4-openssl-dev libcryptopp-dev libmicrohttpd-dev libjsoncpp-dev \

n"

1.2.

Ethereum Clients 27

Ethereum Classic Documentation, Release 0.1

libargtable2-dev libedit-dev mesa-common-dev ocl-icd-libopencll opencl-headers \
libgoogle-perftools—dev gtbase5-dev gt5-default gtdeclarativeS-dev \
libgt5webkit5-dev libgt5webengine5-dev ocl-icd-dev libv8-dev libz-dev

sudo apt-get -y install libjson-rpc-cpp-dev
sudo apt—-get -y install gml-module-gtquick-controls gml-module-gtwebengine

Ubuntu Wily Werewolf (15.10) Steps:

sudo apt-get -y update

sudo apt-get -y install language-pack-en-base

sudo dpkg-reconfigure locales

sudo apt—-get -y install software-properties—-common

sudo add-apt-repository "deb http://llvm.org/apt/wily/ llvm-toolchain-wily—-3.7 main"
wget -O — http://llvm.org/apt/llvm-snapshot.gpg.key | sudo apt-key add -

sudo apt—-get -y update

sudo apt-get -y install 1llvm-3.7-dev

sudo add-apt-repository -y ppa:ethereum/ethereum—-qgt
sudo add-apt-repository -y ppa:ethereum/ethereum
sudo add-apt-repository -y ppa:ethereum/ethereum-dev
sudo apt—-get -y update

sudo apt—-get -y upgrade

sudo apt—-get -y install build-essential git cmake libboost-all-dev libgmp-dev \
libleveldb-dev libminiupnpc-dev libreadline-dev libncurses5-dev \
libcurlé4-openssl-dev libcryptopp-dev libmicrohttpd-dev libjsoncpp-dev \
libargtable2-dev libedit-dev mesa-common-dev ocl-icd-libopencll opencl-headers \
libgoogle-perftools—dev gtbase5-dev gt5-default gtdeclarativebS-dev \
libgt5webkit5-dev libgt5webengine5-dev ocl-icd-dev libv8-dev libz-dev

sudo apt-get -y install libjsonrpccpp-dev
sudo apt-get -y install gml-module-gtquick-controls gml-module-gtwebengine

Ubuntu Xenial Xerus (16.04) Steps:

sudo apt—-get -y update

sudo apt-get -y install language-pack-en-base

sudo dpkg-reconfigure locales

sudo apt-get -y install software-properties-common

sudo apt-get -y install 1llvm-3.7-dev

sudo add-apt-repository -y ppa:ethereum/ethereum-gt
sudo add-apt-repository -y ppa:ethereum/ethereum
sudo add-apt-repository -y ppa:ethereum/ethereum-dev
sudo apt—-get -y update

sudo apt—-get -y upgrade

sudo apt-get -y install build-essential git cmake libboost-all-dev libgmp-dev \
libleveldb-dev libminiupnpc-dev libreadline-dev libncurses5-dev \
libcurld-openssl-dev libcryptopp-dev libmicrohttpd-dev libjsoncpp-dev \
libargtable2-dev libedit-dev mesa-common-dev ocl-icd-libopencll opencl-headers \
libgoogle-perftools—dev gtbase5-dev gt5-default gtdeclarativeb-dev \
libgt5webkit5-dev libgt5webengine5-dev ocl-icd-dev libv8-dev libz-dev

sudo apt-get -y install libjsonrpccpp-dev

sudo apt-get -y install gml-module-gtquick-controls gml-module-gtwebengine \
gml-module—-gtquick-privatewidgets gml-module-gtquick-dialogs \
gml-module-gt-labs-settings gml-module-gtgraphicaleffects

28 Chapter 1. Contents

Ethereum Classic Documentation, Release 0.1

Installing dependencies for Fedora

Fedora 20 Steps:

yum install git automake autoconf libtool cmake gcc gcc-c++ xkeyboard-config \
leveldb-devel boost-devel gmp-devel cryptopp-devel miniupnpc-devel \
gt5-gtbase-devel gtS5-gtdeclarative-devel gtS-gtquickl-devel gt5-gtwebkit-devg
mesa-dri-drivers snappy-devel ncurses—-devel readline-devel curl-devel \
python-devel

Pl

Fedora 21 Steps:

yum install git automake autoconf libtool cmake gcc gcc-c++ xkeyboard-config \
leveldb-devel boost-devel gmp-devel cryptopp-devel miniupnpc-devel \
gt5-gtbase-devel gt5-gtdeclarative-devel gt5-gtquickl-devel gt5-gtwebkit-devg
mesa-dri-drivers snappy-devel ncurses—-devel readline—-devel curl-devel \
python-devel jsoncpp-devel argtable-devel

el

Build json-rpc from github as per https://github.com/ethereum/cpp-ethereum/issues/617:

git clone https://github.com/cinemast/libjson-rpc-cpp
cd libjson-rpc-cpp

git checkout tags/v0.3.2

mkdir -p build

cd build

cmake .. && make

sudo make install

sudo ldconfig

Fedora 22 Fedora 22 dependencies there may be more depends what you have already installed:

dnf install git automake autoconf libtool cmake gcc gcc-c++ xkeyboard-config \
leveldb-devel boost-devel gmp-devel cryptopp-devel miniupnpc-devel \
mesa-dri-drivers snappy-devel ncurses—-devel readline-devel curl-devel \
python-devel Jjsoncpp-devel argtable-devel

Install gcc version 4.9! Fedora 22 comes with a different compiler (CC v5.3). This one wont compile webthree-
umbrella 4 me so i installed gcc version 4.9 from SRC!

Check that you have a working gcc4.9 install in /usr/local i installed it in /home/app/gcc49 its your choice read
manual how to compile gcc in google! After that you have to compile everything you need 4 webthree-umbrella
with gcc4.9 so before every cmake:

export CXX=/home/app/gccd9/bin/g++
export CC=/home/app/gccd9/bin/gcc

With this you use gcc4.9 to compile instead of the one that comes with the distro F22. Its not recommended to
uninstall the compiler that comes with your distro! You can also work with symlinking.

Install from Fedora COPR REPO LLVM3.7 with:

dnf copr enable alonid/llvm-3.7
dnf install 1lvm-3.7 1llvm-3.7-devel 1llvm-3.7-static 1llvm-3.7-1libs

I had to do this because Fedora 22 comes with 1lvm-3.5 from stock repos! There may be other solutions but this
one worked 4 me

Install CryptoPP from SRC https://github.com/weidail 1/cryptopp CRYPTOPP_5_6_2:

git clone https://github.com/weidaill/cryptopp
cd cryptopp
git checkout release/CRYPTOPP_5_6_2

1.2. Ethereum Clients 29

https://github.com/ethereum/cpp-ethereum/issues/617
https://github.com/weidai11/cryptopp

Ethereum Classic Documentation, Release 0.1

mkdir build

cd build

export CXX=/home/app/gcc49/bin/g++ <- be sure to compile with gcc4.9
export CC=/home/app/gccd49/bin/gcc <- be sure to compile with gcc4.9
cmake

make

make install

Install QTS from COPR “dnf copr enable @kdesig/Qt5” newer QTS version:

’dnf install gtb5-»

this should install QTS5 version 5.6.0 in COPR repo are other QTS. Packages from other users i didnt test them

Install gtwebengine from https://github.com/qtproject/qtwebengine i installed version 5.6.0 others may also work
find it out :D

git clone https://github.com/gtproject/gtwebengine

cd gtwebengine

git checkout release/v5.6.0

gmake-gt5 <- in other distros its just called gmake in fedora 22 gmake-gt5
make

make install

Install json-rpc from github https://github.com/ethereum/cpp-ethereum/issues/617:

git clone https://github.com/cinemast/libjson-rpc-cpp

cd libjson-rpc-cpp

git checkout tags/v0.4.2

mkdir -p build

cd build

export CXX=/home/app/gcc49/bin/g++ <- be sure to compile with gcc4.9
export CC=/home/app/gccd9/bin/gcc <- be sure to compile with gcc4.9
cmake .. && make

sudo make install

sudo ldconfig

Be sure to check if jsonrpcstub works in console enter “jsonrpcstub” and look if its responding. If it answers No
Argument or s-1-t it works but if you get no such file to blabla.so you have to symlinking the missing ones to your
libs dir /usr/local/lib64 or usr/local/lib depends where the file blabla.so is try to find it with “updatedb” and than
“locate blabla.so”

Try to compile now it should work if not there a missing symlinks cause of no such file easyfix or there are some
missing Packages try to find them with dnf like this “dnf search packname*” or “dnf list packname*” all i can say
its not a 5 min compile of webthree-umbrella enjoy Tflux99.

Installing dependencies for openSUSE Here is how to get the dependencies needed to build the latest webthree-
umbrella on OpenSUSE. This was done on Leap 42.1, but there should be equivalent packages available for
Tumbleweed and 13.x.

First install dependencies provided by the main repos:

zypper in git automake autoconf libtool cmake gcc gcc-c++ \
xkeyboard-config leveldb-devel boost-devel gmp-devel \
cryptopp-devel libminiupnpc—-devel libgt5-gtbase-common-devel \
libgt5-gtdeclarative—-devel 1ibQTWebKit-devel libgt5-gtwebengine-devel \
libQt5Concurrent-devel Mesa ncurses—devel readline-devel libcurl-devel \
1llvm llvm-clang llvm-clang-devel llvm-devel 1ibLLVM binutils \
libmicrohttp-devel jsoncpp-devel opencl-headers-1.2 zlib-devel

It may be possible to use the generic libOpenCLI, but I have only tested with the AMD proprietary package from
the AMD drivers repo fglrx64_opencl_SUSE421

30 Chapter 1. Contents

https://github.com/qtproject/qtwebengine
https://github.com/ethereum/cpp-ethereum/issues/617

Ethereum Classic Documentation, Release 0.1

These packages are not in the standard repos but can be found using the OpenSUSE build service package search
and YaST 1-Click Install:

* libargtable2-devel
* 1ibv8-3
* v8-devel

If you also have v8 from the chromium repo installed the devel package will default to the 4.x branch which will
not work. Use YaST or zypper to downgrade this package to 3.x

Installing dependencies for Arch Linux Compiling webthree-umbrella on Arch Linux requires dependencies
from both the official repositories and the Arch User Repository (AUR). To install packages from the official
repositories pacman is used. For installation of packages from the AUR, a number of AUR helpers is available.
For this guide, yaourt AUR helper is used.

Installing dependencies

from official repositories sudo pacman -Sy git base-devel cmake boost crypto++ leveldb llvm mini-
upnpc libcl opencl-headers libmicrohttpd qt5-base qt5-webengine

from AUR yaourt -Sy libjson-rpc-cpp

Compiling the source code During this step, an installation folder for the Ethereum can be specified. Specifi-
cation of the folder is optional though. If not given, the binary files will be located in the build folder. However,
for this guide, it is assumed that the Ethereum files will be installed under /opt/eth. The reason for using /opt is
that it makes much easier to delete the Ethereum files later on, as compared to having them installed under, e.g.,
/usr. Also /opt is commonly used to install software that is not managed by packaging systems, such as manually
compiled programs.

enter webthree-umbrella folder after cloning its github repository
cd webthree—-umbrella

make a build folder and enter into it
mkdir -p build && cd build

create build files and specify Ethereum installation folder
cmake .. —-DCMAKE_INSTALL_PREFIX=/opt/eth

compile the source code
make

alternatively it is possible to specify number of compilation threads
for example to use 4 threads execute make as follows:
make -j 4

install the resulting binaries, shared libraries and header files into /opt
sudo make install

After successful compilation and installation, Ethereum binaries can be found in /opt/eth/bin, shared libraries in
/opt/eth/lib, and header files in /opt/eth/include.

Specifying Ethereum libraries path Since Ethereum was installed in /opt/eth, executing its binaries can result
in linker error due to not being able to find the Ethereum shared libraries. To rectify this issue, it is needed to add
the folder containing Ethereum shared libraries into LD_LIBRARY_PATH environmental variable:

update ~/.bashrc
echo "export LD_LIBRARY_PATH=S$LD_LIBRARY_PATH:/opt/eth/lib" >> ~/.bashrc

1.2. Ethereum Clients 31

https://wiki.archlinux.org/index.php/Official_repositories
https://wiki.archlinux.org/index.php/Arch_User_Repository
https://wiki.archlinux.org/index.php/Pacman
https://wiki.archlinux.org/index.php/AUR_helpers
http://archlinux.fr/yaourt-en

Ethereum Classic Documentation, Release 0.1

reload ~/.bashrc
source ~/.bashrc

Installing dependencies for Debian

Warning: GUI applications haven’t been tried on Debian. So, to build without GUI applications use:

Debian Jessie (8.5)
cmake .. -DGUI=O0

Steps:

sudo apt-get -y install gcc
sudo apt-get -y install g++
sudo apt-get -y install unzip
sudo apt-get -y install cmake

Make sure you installed the cmake version 3.5.2. If apt-get installed an older version, compile it from source
following the instructions in this link

sudo apt-get -y install libboost-all-dev
sudo apt-get -y install libgmp-dev

sudo apt-get -y install libjsoncpp-dev
sudo apt-get -y install libleveldb-dev

To install cryptopp it’s necessary build from source:

mkdir ~/download
cd ~/download
wget https://www.cryptopp.com/cryptopp563.zip

mkdir cryptopp

mv cryptopp563.zip cryptopp
cd cryptopp

unzip -a cryptopp563.zip

make static dynamic cryptest.exe

Testing installation:

‘./cryptest.exe v

Verify results, and do another test:

’./cryptest.exe tv

Testing ok? Let’s continue:

make libcryptopp.a libcryptopp.so cryptest.exe
sudo make install PREFIX=/usr/local

CryptoPP installed!:

sudo apt-get -y install libminiupnpc-dev

Now, install LLVM building from source:

sudo apt-get -y install build-essential

mkdir ~/download/llvm

cd ~/download/llvm

wget —-c http://llvm.org/releases/3.8.0/11lvm-3.8.0.src.tar.xz
wget —-c http://llvm.org/releases/3.8.0/cfe-3.8.0.src.tar.xz

32 Chapter 1. Contents

https://cmake.org/download/

Ethereum Classic Documentation, Release 0.1

wget —-c http://llvm.org/releases/3.8.0/compiler-rt-3.8.0.src.tar.xz

tar —-xf 1lvm-3.8.0.src.tar.xz
tar -xf cfe-3.8.0.src.tar.xz
tar -xf compiler-rt-3.8.0.src.tar.xz

mv 1lvm-3.8.0.src 11lvm-3.8.0
mv cfe-3.8.0.src cfe
mv compiler-rt-3.8.0.src compiler-rt

mv cfe 1lvm-3.8.0/tools
mv compiler-rt 1lvm-3.8.0/projects/

mkdir build
cd build

cmake ../1lvm-3.8.0
make

sudo make install
sudo ldconfig

Coming back to apt-get:

sudo apt-get -y install opencl-dev
sudo apt-get -y install libcurlé4-openssl-dev

Install json-rpc-cpp building from source:

sudo apt-get source libmicrohttpd-dev
sudo apt-get -y install libargtable2-dev
sudo apt-get -y install libmicrohttpd-dev

git clone git://github.com/cinemast/libjson-rpc-cpp.git
mkdir -p libjson-rpc-cpp/build

cd libjson-rpc-cpp/build

cmake

make

sudo make install

sudo ldconfig

Build on the command-line ONLY after you have installed your dependencies (the rest of this doc!):

mkdir build Make a directory for the build output

cd build Switch into that directory

cmake .. To generate a makefile.

make To build that makefile on the command-1i:
make —-j <number> (or) Execute makefile with multiple core

Building for Windows We support only 64-bit builds and only for the following versions of Windows:
e Windows 7
* Windows 8/8.1
* Windows 10
* Windows Server 2012 R2

It may be possible to get the client working for Windows 32-bit, by disabling EVMIIT and maybe other features
too. We might accept pull-requests to add such support, but we will not put any of our own development time into
supporting Windows 32-bit builds.

1.2. Ethereum Clients 33

https://en.wikipedia.org/wiki/Windows_7
https://en.wikipedia.org/wiki/Windows_8
https://en.wikipedia.org/wiki/Windows_10
https://en.wikipedia.org/wiki/Windows_Server_2012_R2

Ethereum Classic Documentation, Release 0.1

Pre-requisites You will need to install the following dependencies

Software Notes

Git for Windows Command-line tool for retrieving source from Github.
CMake Cross-platform build file generator.

Visual Studio 2015 | C++ compiler and dev environment.

Get the source Clone the git repository containing all the source code by executing the following command:

git clone —-recursive https://github.com/bobsummerwill/cpp-ethereum.git
cd cpp-ethereum

git checkout merge_repos

git submodule update —--init

Get the external dependencies Execute the CMake script that downloads and unpacks pre-built external li-
braries needed to build the project:

install_deps.bat

Generate Visual Studio project files Then execute the following commands, which will generate a Visual
Studio solution file using CMake:

mkdir build
cd build
cmake -G "Visual Studio 14 2015 Wino64"

Which should result in the creation of cpp-ethereum.sln in that build directory.
NOTE: We only support Visual Studio 2015 as of cpp-ethereum-v.1.3.0.

Double-clicking on that file should result in Visual Studio firing up. We suggest building RelWithDebuglInfo
configuration, but all others work.

Build on the command-line Alternatively, you can build the project on the command-line, like so:

cmake —--build . —--config RelWithDebInfo

Building for OS X

Overview - Here be dragons! It is impossible for us to avoid OS X build breaks because Homebrew is a “rolling
release” package manager which means that the ground will forever be moving underneath us unless we add all
external dependencies to our Homebrew tap, or add them as git sub-modules within the umbrella projects. End-
user results vary depending on when they are build the project. Building yesterday may have worked for you, but
that doesn’t guarantee that your friend will have the same result today on their machine. Needless to say, this isn’t
a happy situation.

If you hit build breaks for OS X please look through the Github issues to see whether the issue you are experiencing
has already been reported. If so, please comment on that existing issue. If you don’t see anything which looks
similar, please create a new issue, detailing your OS X version, cpp-ethereum version, hardware and any other
details you think might be relevant. Please add verbose log files via gist.github.com or a similar service.

The cpp-ethereum-development gitter channel is where we hang out, and try to work together to get known issues
resolved.

We only support the following OS X versions:
¢ OS X Mavericks (10.9)
¢ OS X Yosemite (10.10)

34 Chapter 1. Contents

https://git-scm.com/download/win
https://cmake.org/download/
https://www.visualstudio.com/products/vs-2015-product-editions
https://github.com/ethereum/webthree-umbrella/issues/118
https://github.com/ethereum/webthree-umbrella/issues/118
http://github.com/ethereum/homebrew-ethereum
https://github.com/ethereum/webthree-umbrella/issues
http://gist.github.com
https://gitter.im/ethereum/cpp-ethereum-development
https://en.wikipedia.org/wiki/OS_X_Mavericks
https://en.wikipedia.org/wiki/OS_X_Yosemite

Ethereum Classic Documentation, Release 0.1

* OS X El Capitan (10.11)

The cpp-ethereum code base does not build on older OS X versions and this is not something which we will ever
support. If you are using an older OS X version, we recommend that you update to the latest release, not just so
that you can build cpp-ethereum, but for your own security.

Clone the repository To clone the source code, execute the following command:

git clone —-recursive https://github.com/bobsummerwill/cpp—-ethereum.git
cd cpp-ethereum

git checkout merge_repos

git submodule update —--init

Pre-requisites and external dependencies Ensure that you have the latest version of xcode installed. This
contains the Clang C++ compiler, the xcode IDE and other Apple development tools which are required for
building C++ applications on OS X. If you are installing xcode for the first time, or have just installed a new
version then you will need to agree to the license before you can do command-line builds:

sudo xcodebuild -license accept

Our OS X builds require you to install the Homebrew package manager for installing external dependencies.
Here’s how to uninstall Homebrew, if you ever want to start again from scratch.

We now have a “one button” script which installs all required external dependencies on macOS and on numerous
Linux distros. This used to a multi-step manual process:

./install_dep.sh

Command-line build From the project root:

mkdir build

cd build

cmake

make -j4 (or different value, depending on your number of CPU cores)

Install your own build You can also use the same Makefile to install your own build globally on your machine:

make install

This will install binaries into /usr/local/ and /usr/bin/.

Generate xcode project From the project root:

mkdir build_xc
cd build_xc
cmake -G Xcode

This will generate an Xcode project file called cpp-ethereum.xcodeproj, which you can then open with xcode
and build/debug/run.

Building for FreeBSD NOTE - Once the packages are in the FreeBSD main ports this guide should be changed
to something much more simple

1.2. Ethereum Clients 35

https://en.wikipedia.org/wiki/OS_X_El_Capitan
https://developer.apple.com/xcode/download/
https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/Xcode
http://brew.sh
https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#how-do-i-uninstall-homebrew

Ethereum Classic Documentation, Release 0.1

Install the ports manually For some of this steps you must require a root access to modify the ports directory.

The webthree-umbrella depends on [libjson-rpc-cpp.shar](https://raw.githubusercontent.com/enriquefynn/webthree-
umbrella-port/master/libjson-rpc-cpp.shar) that is also not in the ports system.

First you need to download the shar file and place it on your ports directory under the “devel” session, usually
/usr/ports/devel

‘curl https://raw.githubusercontent.com/enriquefynn/webthreefumbrellafport/master/libﬁsonfrpcfcpp.

Now we execute the script with:

cd /usr/ports/devel
sh libjson-rpc-cpp.shar

This will create the libjson-rpc-cpp port. ~Now you should do the same for the webthree-umbrella
port, we should get the [webthree-umbrella](https://raw.githubusercontent.com/enriquefynn/webthree-umbrella-
port/master/webthree-umbrella.shar) file and create the port under “net-p2p” directory.

curl https://raw.githubusercontent.com/enriquefynn/webthree—umbrella-port/master/webthree—umbrell
cd /usr/ports/net-p2p
sh webthree-umbrella.shar

Build and Install Now you can navigate to the webthree-umbrella directory and install the port:

cd /usr/ports/net-p2p/webthree—-umbrella
make install clean

Building for Android We don’t currently have a working Android build, though that is on the roadmap for
doublethinkco. Android uses the Linux kernel, but has a different API than the ARM Linux cross-builds, meaning
that specific binaries will be required.

ARM Linux distros use the GLIBC runtime library, where Android uses bionic.

Building for iOS We don’t currently have a working iOS build, though that is on the roadmap for doublethinkco.
i0S is a UNIX-like operating system based on Darwin (BSD) using ARM chips. This is a different API than the
ARM Linux cross-builds, meaning that specific binaries will be required.

Building for Raspberry Pi Model A, B+, Zero, 2 and 3 EthEmbedded maintain build scripts for all Raspberry
Mi models. They are on Github in the Raspi-Eth-Install repository. It is also possible to cross-build for these
platforms.

Building for Odroid XU3/XU4 EthEmbedded maintain build scripts for both of these Odroid models. Support
for a broader range of Odroid devices is likely in the future. They are on Github in the OdroidXU3-Eth-Install
repository. It is also possible to cross-build for these platforms.

Building for BeagleBone Black EthEmbedded maintain build scripts for BBB on Github in the BBB-Eth-Install
repository. It is also possible to cross-build for this platform.

Building for WandBoard EthEmbedded maintain build scripts for the WandBoard on Github in the
WandBoard-Eth-Install repository. It is also possible to cross-build for this platform.

36 Chapter 1. Contents

https://raw.githubusercontent.com/enriquefynn/webthree-umbrella-port/master/libjson-rpc-cpp.shar
https://raw.githubusercontent.com/enriquefynn/webthree-umbrella-port/master/libjson-rpc-cpp.shar
https://raw.githubusercontent.com/enriquefynn/webthree-umbrella-port/master/webthree-umbrella.shar
https://raw.githubusercontent.com/enriquefynn/webthree-umbrella-port/master/webthree-umbrella.shar
https://github.com/doublethinkco/webthree-umbrella-cross/issues/35
http://doublethink.co
http://doublethink.co/2015/12/31/a-tale-of-two-abis/
https://github.com/doublethinkco/webthree-umbrella-cross/issues/36
http://doublethink.co
http://doublethink.co/2015/12/31/a-tale-of-two-abis/
http://EthEmbedded.com
https://github.com/EthEmbedded/Raspi-Eth-Install
http://EthEmbedded.com
https://github.com/EthEmbedded/OdroidXU3-Eth-Install
http://EthEmbedded.com
https://github.com/EthEmbedded/BBB-Eth-Install
http://EthEmbedded.com
https://github.com/EthEmbedded/WandBoard-Eth-Install

Ethereum Classic Documentation, Release 0.1

Building for Linux for ARM (cross builds) doublethinkco maintain a Docker-based cross-build infrastructure
which is hosted on Github in the cpp-ethereum-cross repository.

At the time of writing, these cross-built binaries have been successfully used on the following devices:
¢ Jolla Phone (Sailfish OS)
¢ Nexus 5 (Sailfish OS)
e Meizu MX4 Ubuntu Edition (Ubuntu Phone)
» Raspberry Pi Model B+, Rpi2 (Raspbian)
¢ Qdroid XU3 (Ubuntu MATE)
* BeagleBone Black (Debian)
¢ Wandboard Quad (Debian)
¢ C.H.LLP. (Debian)
Still TODO:
* Tizen
* Android
¢ i0S

Running

Running eth without any argument will synchronise your node to the public blockchain. It is also possible to
create or synchronise to another blockchain (see custom blockchain using eth).

Interacting with your node can be done using either geth or the ethereum console:
Using geth
Using the ethereum console

The ethereum console is a node.js application which connect to a running eth/geth node and provide access to the
web3 object.

Note: https://github.com/ethereum/ethereum-console

It can be installed using npm:

Note:

> npm install -g ethereum-console
> ethconsole

Note:

Usage:

ethconsole [javascript file] [ipc socket]

Connects to an ethereum node via ipc in order to control it remotely

through global variable web3 (web3.admin is also present).

If no arguments are given, connects to the default ipc socket

and drops into interactive mode.

Arguments:

<ipc socket path> connect to the given ipc socket (use ipc://<path> if it does not end with .ipc)

1.2. Ethereum Clients 37

http://doublethink.co
http://github.com/doublethinkco/cpp-ethereum-cross
https://github.com/ethereum/ethereum-console

Ethereum Classic Documentation, Release 0.1

<javascript file> execute the given javascript file that has to end in .js non-interactively.
The script has to call process.exit() in order to terminate the console.

What are the modules?

What are the primary executables?
* eth A command-line Ethereum full-node that can be controlled via RPC.
e mix An IDE for contract and user interface development, testing and deployment to the blockchain.
¢ solc The solidity command line compiler

e lllc The LLL command-line compiler.

Deprecated executables, to be retired soon
¢ AlethZero A Qt-based all-encompassing GUI for interacting with Ethereum (receives minimal support).

* EthKey Key management CLIL

What are the various modules?
e AlethZero - A Qt-based GUI for interacting with Ethereum. Receives minimal support.

¢ libethereum - Modules related to the Ethereum part of web3, i.e. consensus engine, blockchain download, virtual mac

ethkey: stand-alone key management

— ethminer: stand-alone ethash miner

— ethvm: stand-alone EVM execution utility

— evmyjit: library for the EVM just-in-time compiler

— libethash: ethash mining POW algorithm implementation

— libethash-cl: ethash mining code for GPU mining (OpenCL)

— libethashseal: generic wrapper around the POW block seal engine. Also contains the genesis
states for all ethash-based chains.

— libethcore: collection of core data structures and concepts
— libethereum: main consensus engine (minus EVM). Includes the State and BlockChain classes.
— libevm: Ethereum Virtual Machine implementation (interpreter).
— libevmasm: EVM assembly tools, also contains the optimizer.
— libevmcore: elementary data structures of the EVM, opcodes, gas costs, ...
— liblll: Low-level LISP-like Language compiler & assembler.
— libnatspec: natspec script evaluator (confirmation messages)
— libtestutils: utilities for testing code
— lllc: LLL compiler commandline interface
¢ libweb3core - Web3 core libraries, networking, encoding, decoding, basic data structures.
— bench: trie benchmarking
— libdevcore: data structures, utilities, rlp, trie, memory db

— libdeverypto: crypto primitives. Depends on libsecp256k1 and libcrypto++.

38 Chapter 1. Contents

Ethereum Classic Documentation, Release 0.1

— libp2p: core peer to peer networking implementation (excluding specific sub-protocols)
— rlp: stand-alone rlp en-/decoder
e mix - Dapp IDE
* solidity - Solidity compiler
— docs: documentation, appears at http://solidity.readthedocs.org/
— libsolidity: actual implementation
— analysis: reference resolution, type checking, ... (builds up the annotations for the AST)
— ast: abstract syntax tree and type system
— codegen: assembly code generation from annotated AST
— formal: formal verification
— interface: external interface for users of libsolidity
— parsing: parser (creates the non-annotated AST)
— solc: commandline compiler
* web3.js - JavaScript Dapp framework library (connects to backend via RPC / IPC)
* webthree - actual client / node implementation (‘“‘eth”)

eth: commandline client / node

libjsconsole: JavaScript console for access to eth - deprecated, to be replaced by nodejs applica-
tion

libjsengine: underlying engine for libjsconsole, to be removed

libweb3jsonrpc: json-rpc server-side endpoint, provides http and IPC (unix socket, windows pipe)
connectors

libwebthree: service connectors for ethereum, swarm/ipfs and whisper.

libwhisper: whisper implementation

* webthree-helpers - build system and some external dependencies
— cmake: cmake files for build system, contains specification of inter-dependencies
— utils: external dependencies

* json_spirit: JSON parser written for Boost’s Spirit library.

libscrypt: scrypt implementation

% secp256k1: implementation of the SECP 256kl ECDSA signing algorithm.

Automation setup for cpp-ethereum

At the time of writing all of the automation for cpp-ethereum is driven using a Jenkins instance hosted at
http://52.28.164.97.

There is a “pretty alias” to the setup at http://ethbuilds.com, but that is owned by Bob Summerwill personally, not
by the Ethereum Foundation, and might end up pointing to something else at a later date.

1.2. Ethereum Clients 39

http://solidity.readthedocs.org/
http://52.28.164.97
http://ethbuilds.com
http://bobsummerwill.com/about

Ethereum Classic Documentation, Release 0.1

74

£

- ~—
g T

It runs in parallel with the Ethereum buildbot instance which is used for Go and Python builds.

The fact that we have two different automation systems is not ideal, and is for historical reasons. It would make
sense for us to consolidate all Ethereum Foundation projects into a single, consistent automation setup, but that
is a non-trivial amount of work. We’re talking about that. It will be much easier to assess that when we have
completed the repo reorg for the C++ codebase.

The current Jenkins setup is missing a canonical continuous integration target, which is a major weakness. There
is no single URL which you can visit to find out whether the C++ builds are working or broken at HEAD. There
is not even a URL which you can visit per repository, to find if the individual repositories are working or broken.

We are also missing automation for webthree-umbrella as a whole, to know whether the set of repositories which
we are publishing is working or broken.

What we do have is automation of our pull-requests. Those are built against the develop branches of the repos-
itories which they depend on. There is a mechanism for specifying alternative branches for those dependencies,
when testing changes which span multiple repositories. But it is broken.

Here are the Jenkins projects for the PR automation. These are triggered automatically via Github webhooks
whenever new PRs are created, or when the content of the branches for existing PRs is updated:

e alethzero-prs - PR testing for alethzero
* libethereum-prs - PR testing for libethereum
e libweb3core-prs - PR testing for libweb3core
* mix-prs - PR testing for mix
* solidity-prs - PR testing for solidity
» webthree-helpers-prs - PR testing for webthree-helpers
» webthree-prs - PR testing for webthree
Here are the other Jenkins projects we have:

* ethbinaries-develop and ethbinaries-release - Projects for generating Windows and OS X binaries for the
develop and release branches of the webthree-umbrella. The develop project is run nightly at midnight,
UTC. The release project is run manually.

* ppa-build-develop and ppa-build-release - Projects for packaging source and build steps which are then
pushing to Launchpad where they will be built, and the binaries pushed to the world if they are successful.
The develop project is run nightly at midnight, UTC. The release project is run manually.

* solidity-emscripten - Solidity builds for the Emscripten architecture. This is the build target, which calls the
publish target detailed below. It is run nightly at midnight, UTC.

e update-umbrella - Utility project which can be run manually to update the submodules in the webthree-
umbrella project. It will soon be obsolete. It is run manually, and also nightly.

The following projects are effectively “libraries” which are used to build the “user-facing” projects above.

* ethbinaries-build - Used in ethbinaries-develop and ethbinaries-release.

40 Chapter 1. Contents

https://builds.ethereum.org/
https://github.com/ethereum/webthree-umbrella/issues/251
https://github.com/ethereum/webthree-umbrella/issues/247
http://github.com/ethereum/webthree-umbrella
https://github.com/ethereum/webthree-umbrella/issues/257
http://52.28.164.97/job/alethzero-prs/
http://52.28.164.97/job/libethereum-prs/
http://52.28.164.97/job/libweb3core-prs/
http://52.28.164.97/job/mix-prs/
http://52.28.164.97/job/solidity-prs/
http://52.28.164.97/job/webthree-helpers-prs/
http://52.28.164.97/job/webthree-prs/
http://52.28.164.97/job/ethbinaries-develop/
http://52.28.164.97/job/ethbinaries-release/
http://52.28.164.97/job/ppa-build-develop/
http://52.28.164.97/job/ppa-build-release/
https://launchpad.net/~ethereum/+archive/ubuntu/ethereum
http://52.28.164.97/job/solidity-emscripten/
http://52.28.164.97/job/update-umbrella/
http://52.28.164.97/job/ethbinaries-build/

Ethereum Classic Documentation, Release 0.1

* project-build - Used in all the PR projects.
* project-test - Used in all the PR projects.
* pullrequest_parser - Used in all the PR projects.
* solidity-emscripten-publisher - Used in solidity-emscripten.
Bob does not know what these Jenkins targets are. They may be obsolete.
* code-coverage-run

We have been making a conscious effort to move our automation scripts into Git from Jenkins to reduce the
“voodoo factor” in our automation. It is still a work in progress, but here are some key scripts which our automation
uses:

* homebrew/prepare_receipt.sh - Build for Homebrew
e scripts/build_emscripten.sh - Build Emscripten binaries (for browser-solidity)
e scripts/ethbinaries.sh - Build Windows and OS X binaries
e scripts/ethbuild.sh - Build code (all platforms)
* scripts/ethtests.sh - Run tests (all platforms)
e scripts/ppabuild.sh - Build bundle for PPAs
But we still have some scripts which are orphaned within Jenkins:
* Create ZIP of Eth in Windows powershell - Used to make win_eth.zip

e github_issue_mover.py - Script used to match move issues from cpp-ethereum to webthree-umbrella repo

Setting up a new Jenkins slave This is a nightmare process. Here’s how to add an OS X slave. The process for
other platforms will vary, but we’ve not had to do it yet.

* Install appropriate operating system (Bob had to use his own Apple login)
* Install the latest xcode from the Mac Store

¢ Install Homebrew

say yes to xcode select license

brew update

brew upgrade

install pre-requisites (http://www.ethdocs.org/en/latest/ethereum-clients/cpp-ethereum/building-
from-source/osx.html)

install Ruby
* See https://github.com/rbenv/rbenv#homebrew-on-mac-o0s-x
* brew install rbenv
+ rbenv init
* rbenv install 1.9.3-p551
% Add eval “$(rbenv init -)” to ~/.bash_profile:
— Connect the slave using Java web-start (have to lower security settings)
— Cut-and-paste PATH from the machine into the Configure field for the node in Jenkins:

+ Example: /Users/administrator/.rbenv/shims:/ust/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

1.2. Ethereum Clients 41

http://52.28.164.97/job/project-build/
http://52.28.164.97/job/project-test/
http://52.28.164.97/job/pullrequest_parser/
http://52.28.164.97/job/solidity-emscripten-publisher/
http://52.28.164.97/job/code-coverage-run/
https://github.com/ethereum/webthree-umbrella/issues/439
https://github.com/ethereum/webthree-helpers/blob/develop/homebrew/prepare_receipt.sh
https://github.com/ethereum/webthree-helpers/blob/develop/scripts/build_emscripten.sh
https://github.com/ethereum/webthree-helpers/blob/develop/scripts/ethbinaries.sh
https://github.com/ethereum/webthree-helpers/blob/develop/scripts/ethbuild.sh
https://github.com/ethereum/webthree-helpers/blob/develop/scripts/ethtests.sh
https://github.com/ethereum/webthree-helpers/blob/develop/scripts/ppabuild.sh
http://52.28.164.97/configfiles/show?id=org.jenkinsci.plugins.managedscripts.PowerShellConfig1444842304838
http://52.28.164.97/configfiles/show?id=org.jenkinsci.plugins.managedscripts.ScriptConfig1443614334556
http://www.ethdocs.org/en/latest/ethereum-clients/cpp-ethereum/building-from-source/osx.html
http://www.ethdocs.org/en/latest/ethereum-clients/cpp-ethereum/building-from-source/osx.html
https://github.com/rbenv/rbenv#homebrew-on-mac-os-x

Ethereum Classic Documentation, Release 0.1

Known issues
* Lack of canonical build
* Lack of webthree-umbrella builds
* No automated Windows tests
* Broken cross-repo PRs
* Hanging tests
 Incomplete test suits
* Do we run “ethereum/tests” at all?
* Do we run “ethereum/rpc-tests” at all?
* Windows box is running Windows 7 home edition. No RDC access.
* Running Visual Studio 2013.
* Should be running Windows 10 with VS2015 targeting Windows7
* We still don’t have working El Capitan binaries
* Nothing doing Homebrew/PPA updates per cycle

¢ No clean builds ever?

1.2.4 go-ethereum

The go-ethereum client is commonly referred to as geth, which is the the command line interface for running a
full ethereum node implemented in Go. By installing and running geth, you can take part in the ethereum frontier
live network and:

* mine real ether
* transfer funds between addresses
* create contracts and send transactions
* explore block history
* and much much more
Links:
* Website: http://ethereum.github.io/go-ethereum/
 Github: https://github.com/ethereum/go-ethereum
* Wiki: https://github.com/ethereum/go-ethereum/wiki/geth

* Gitter: https://gitter.im/ethereum/go-ethereum

1.2.5 pyethapp
pyethapp is the python-based client implementing the Ethereum cryptoeconomic state machine. The python
implementation aims to provide an easily hackable and extendable codebase.
pyethapp leverages two ethereum core components to implement the client:
 pyethereum - the core library, featuring the blockchain, the ethereum virtual machine, mining

* pydevp2p - the p2p networking library, featuring node discovery for and transport of multiple services over
multiplexed and encrypted connections

Links:

* Github: https://github.com/ethereum/pyethapp

42 Chapter 1. Contents

http://ethereum.github.io/go-ethereum/
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum/wiki/geth
https://gitter.im/ethereum/go-ethereum
https://github.com/ethereum/pyethereum
https://github.com/ethereum/pydevp2p
https://github.com/ethereum/pyethapp

Ethereum Classic Documentation, Release 0.1

» Wiki: https://github.com/ethereum/pyethapp/wiki/Getting-Started

* Gitter chat: https://gitter.im/ethereum/pyethapp

1.2.6 ethereumijs-lib
ethereumjs-lib is the javascript library of core Ethereum functions as described in the Yellow Paper. This is a
simple meta-module that provides the following modules. Most JS modules are tracked in ethereumjs
e VM - The Ethereum virtual machine and state processing functions
* Blockchain - Blockchain managment
* Block - Block Schema definition and validation
* Transaction - Transaction Schema definition and validation
* Account - Account Schema definition and validation
* rlp - Recursive Length Prefix serialization
¢ Trie - Modified Merkle Patricia Tree
* Ethash - Ethereum’s Proof of Work algorithm
* utils - Miscellaneous helper functions
¢ devp2p - The networking protocol
* devp2p-dpt - The disputed peer table
Links:
* Github: https://github.com/ethereumjs/ethereumjs-lib

* Join the Gitter chat: https://gitter.im/ethereum/ethereumjs-lib

1.2.7 Ethereum(J)

Ethereum(J) is a pure-Java implementation of the Ethereum protocol. It is provided as a library that can be em-
bedded in any Java/Scala project and to provide full support for Ethereum protocol and sub-services. Ethereum(J)
was first developed by Roman Mandeleil and is now sponsored by <ether.camp>.

Ethereum(J) supports CPU mining. It is currently implemented in pure Java and can be used in private and test
networks. You may even mine on the live Ethereum network, even though it is not economically feasible.

Links:
* Blog: http://ethereumj.io/
* Github: https://github.com/ethereum/ethereum;j

* Gitter chat: https://gitter.im/ethereum/ethereumj

1.2.8 ethereumH

This package provides a tool written in Haskell to allow you to connect to the Ethereum blockchain
Links:

e Github: https://github.com/blockapps/ethereumH

* BlockApps: http://www.blockapps.net/

1.2. Ethereum Clients 43

https://github.com/ethereum/pyethapp/wiki/Getting-Started
https://gitter.im/ethereum/pyethapp
http://ethereum.org/
https://github.com/ethereum/yellowpaper
https://github.com/ethereumjs
https://github.com/ethereumjs/ethereumjs-vm
https://github.com/ethereumjs/ethereumjs-blockchain
https://github.com/ethereumjs/ethereumjs-block
https://github.com/ethereumjs/ethereumjs-tx
https://github.com/ethereumjs/ethereumjs-account
https://github.com/ethereumjs/rlp
https://github.com/ethereumjs/merkle-patricia-tree
https://github.com/ethereumjs/ethashjs
https://github.com/ethereumjs/ethereumjs-util
https://github.com/ethereumjs/node-devp2p
https://github.com/ethereumjs/node-devp2p-dpt
https://github.com/ethereumjs/ethereumjs-lib
https://gitter.im/ethereum/ethereumjs-lib
https://github.com/romanman
http://www.ether.camp
http://ethereumj.io/
https://github.com/ethereum/ethereumj
https://gitter.im/ethereum/ethereumj
https://github.com/blockapps/ethereumH
http://www.blockapps.net/

Ethereum Classic Documentation, Release 0.1

1.2.9 Parity

Parity claims to be the world’s fastest and lightest Ethereum client. It is written in the Rust language, which offers
improved reliability, performance, and code clarity. Parity is being developed by Ethcore, which was founded by
several members of the Ethereum Foundation.

* Website: https://ethcore.io/parity.html
* Github: https://github.com/ethcore/parity
* Gitter chat: https://gitter.im/ethcore/parity
Arch Linux packages are community maintained by Afri Schoedon and quininer.
e https://aur.archlinux.org/packages/parity/ (stable, latest release)
e https://aur.archlinux.org/packages/parity-git/ (unstable, latest develop)

Some people have reported success with Parity on Raspberry Pi 2.

1.2.10 ruby-ethereum

ruby-ethereum is an implementation of the Ethereum Virtual Machine written in Ruby.
Links:

e Github: https://github.com/janx/ruby-ethereum

e Gem: https://rubygems.org/gems/ruby-ethereum
Related:

* ruby-serpent: Ruby binding to the Ethereum Serpent compiler.

e ethereum-ruby: a pure-Ruby JSON-RPC wrapper for communicating with an Ethereum node. To use this
library you will need to have a running Ethereum node with IPC support enabled (default). Currently, the
go-ethereum client is supported.

1.3 Account Management

1.3.1 Accounts

Accounts play a central role in Ethereum. There are two types of accounts: externally owned accounts (EOAs)
and contract accounts. Here we focus on externally owned accounts, which will be referred to simply as accounts.
Contract accounts will be referred to as contracts and are discussed in detail in Contracts. This generic notion
of account subsuming both externally owned accounts and contracts is justified in that these entities are so called
state objects. These entities have a state: accounts have balance and contracts have both balance and contract
storage. The state of all accounts is the state of the Ethereum network which is updated with every block and
which the network really needs to reach a consensus about. Account are essential for users to interact with the
Ethereum blockchain via transactions.

If we restrict Ethereum to only externally owned accounts and allow only transactions between them, we arrive at
an “altcoin” system that is less powerful than bitcoin itself and can only be used to transfer ether.

Accounts represent identities of external agents (e.g., human personas, mining nodes or automated agents). Ac-
counts use public key cryptography to sign transaction so that the EVM can securely validate the identity of a
transaction sender.

44 Chapter 1. Contents

https://ethcore.io
https://ethcore.io/parity.html
https://github.com/ethcore/parity
https://gitter.im/ethcore/parity
https://github.com/5chdn
https://aur.archlinux.org/packages/parity/
https://aur.archlinux.org/packages/parity-git/
https://github.com/janx/ruby-ethereum
https://rubygems.org/gems/ruby-ethereum
https://github.com/janx/ruby-serpent
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/DigixGlobal/ethereum-ruby

Ethereum Classic Documentation, Release 0.1

1.3.2 Keyfiles

Every account is defined by a pair of keys, a private key and public key. Accounts are indexed by their address
which is derived from the public key by taking the last 20 bytes. Every private key/address pair is encoded in a
keyfile. Keyfiles are JSON text files which you can open and view in any text editor. The critical component of the
keyfile, your account’s private key, is always encrypted, and it is encrypted with the password you enter when you
create the account. Keyfiles are found in the keystore subdirectory of your Ethereum node’s data directory.
Make sure you backup your keyfiles regularly! See the section Backup and restore accounts for more information.

Creating a key is tantamount to creating an account.
* You don’t need to tell anybody else you’re doing it
* You don’t need to synchronize with the blockchain
* You don’t need to run a client
* You don’t even need to be connected to the internet

Of course your new account will not contain any Ether. But it’ll be yours and you can be certain that without your
key and your password, nobody else can ever access it.

It is safe to transfer the entire directory or any individual keyfile between Ethereum nodes.

Warning: Note that in case you are adding keyfiles to your node from a different node, the order of accounts
may change. So make sure you do not rely or change the index in your scripts or code snippets.

1.3.3 Creating an account

Warning: Remember your passwords and ‘backup your keyfiles <backup-and-restore-accounts>‘_. In
order to send transactions from an account, including sending ether, you must have BOTH the keyfile and the
password. Be absolutely sure to have a copy of your keyfile AND remember the password for that keyfile,
and store them both as securely as possible. There are no escape routes here; lose the keyfile or forget your
password and all your ether is gone. It is NOT possible to access your account without a password and there
is no forgot my password option here. Do not forget it.

Using geth account new
Once you have the geth client installed, creating an account is merely a case of executing the geth account
new command in a terminal.

Note that you do not have to run the geth client or sync up with the blockchain to use the geth account
command.

$ geth account new

Your new account is locked with a password. Please give a password. Do not forget f{

Passphrase:
Repeat Passphrase:
Address: {168bc315a2ee09042d83d7c5811b533620531£f67}

For non-interactive use you supply a plaintext password file as argument to the ——password flag. The data in

the file consists of the raw bytes of the password optionally followed by a single newline.

$ geth —--password /path/to/password account new

1.3. Account Management 45

his password

Ethereum Classic Documentation, Release 0.1

Warning: Using the ——password flag is meant to be used only for testing or automation in trusted en-
vironments. It is a bad idea to save your password to file or expose it in any other way. If you do use the
——password flag with a password file, make sure the file is not readable or even listable for anyone but you.
You can achieve this in Mac/Linux systems with:

touch /path/to/password
chmod 600 /path/to/password
cat > /path/to/password

>I type my pass

To list all the accounts with keyfiles currently in you're keystore folder use the 1ist subcommand of the
geth account command:

$ geth account list

account #0: {a94f5374fce5edbc8e2a8697c15331677e6ebf0b}
account #1: {c385233b188811c9£f355d4caecl4df86d6248235}
account #2: {7f444580bfefd4b9bc7eldeb7fb2a029336b07c9d}

The filenames of keyfiles has the format UTC—-<created_at UTC IS08601>-<address hex>. The
order of accounts when listing, is lexicographic, but as a consequence of the timestamp format, it is actually order
of creation.

Using geth console

In order to create a new account using geth, we must first start geth in console mode (or you can use geth
attach to attach a console to an already running instance):

> geth console 2>> file_to_log_output

instance: Geth/vl1.4.0-unstable/linux/gol.5.1
coinbase: coinbase: [object Object]

at block: 865174 (Mon, 18 Jan 2016 02:58:53 GMT)
datadir: /home/USERNAME/.ethereum

The console allows you to interact with your local node by issuing commands. For example, try the command to
list your accounts:

> eth.accounts

{
code: -32000,
message: "no keys in store"

}

This shows that you have no accounts. You can also create an account from the console:

> personal.newAccount ()

Passphrase:

Repeat passphrase:
"0xb2f69ddf70297958e582a0cc98bced43294£10074d"

Note: Remember to use a strong and randomly generated password.

We just created our first account. If we try to list our accounts again we can see our new account:

> eth.accounts
["0xb2f69ddf70297958e582a0cc98bced3294£1007d"]

46 Chapter 1. Contents

Ethereum Classic Documentation, Release 0.1

Using Mist Ethereum wallet

For the command line averse, there is now a GUI-based option for creating accounts: The “official” Mist Ethereum
wallet. The Mist Ethereum wallet, and its parent Mist project, are being developed under the auspices of the
Ethereum Foundation, hence the “official” status. Versions of the wallet app are available for Linux, Mac OS X,
and Windows.

Warning: The Mist wallet is beta software. Please beware and use it at your own risk.

Creating an account using the GUI Mist Ethereum wallet couldn’t be easier. In fact, your first account is created
during the installation of the app.

1. Download the latest version of the wallet app for your operating system. Opening the Wallet App will kick
off syncing a full copy of the Ethereum blockchain on your computer, since you will in effect be running a
full geth node.

2. Unzip the downloaded folder and run the Ethereum-Wallet executable file.

S=IE

Ethereum is a decentralized
platform for building apps on a
bleckchain: tamper-proof software
that can transfer value and
property and lives forever

‘ USE THE TEST NETWORK

\v'(Test the technology freely in a

sandboxed testnet, without using real
ethereum

ether.

USE THE MAIN NETWORK

You'll need to some Etherin order to
create and execute contracts. Don't
worry we'll help you get some._.

Downloading blocks (12 peers) Block 59,711 of 1,106,701

3. Wait for the blockchain to fully sync, then follow the instructions on the screen and your first account will
be created.

4. When you launch the Mist Ethereum wallet for the first time, you will see the account you created during
the installation process. By default it will be named MAIN ACCOUNT (ETHERBASE).

1.3. Account Management 47

https://github.com/ethereum/mist/releases

Ethereum Classic Documentation, Release 0.1

@]

SEND CONTRACTS 0.00 emher
Accounts Overview

ACCOUNTS

ccounts are password protected keys that can holc secure ethereum based tokens or coins
display incoming transactior

&£ MAIN ACCOUNT (ETHERBASE)

WALLET CONTRACTS

nce you have more than 1 ether you can create a more sophisticated contracts. Wallets are one type of basic smart contract, that allows you
trolled by multiple accounts and have an optional daily imit on withdrawals, to increase security. To create your own custom
s g0 to the Contracts tab.

NO TRANSACTIONS YET

5. Creating additional accounts is easy; just click on ADD ACCOUNT in the app’s main screen and enter the
required password.

Note: The Mist wallet is still in active development, so details of the steps outlined above may change with
upgrades.

Creating a Multi-Signature Wallet in Mist

The Mist Ethereum wallet has an option to secure your wallet balance with a multisig wallet. The advantage of
using a multisig wallet is that it requires authorization from more than one account to withdrawal larger amounts
from your balance. Before you can create a multisig wallet, you’ll need to create more than one account.

It’s very easy to create account files in Mist. In the ‘Accounts’ section click ‘Add Account’. Pick a strong yet
easy-to-remember password (remember there is no password recovery option), confirm it, and your account is
created. Create at least 2 accounts. Secondary accounts can be created on separate computers running Mist if you
prefer (and theoretically make your multisig more secure doing it this way). You only need the public keys (your
deposit addresses) of your secondary accounts when creating the multisig wallet (copy/paste them, do not ever
type them by hand). Your primary account will be needed to create the multisig wallet contract, so it must be on
the computer you are creating the multisig wallet on.

Now that you have your accounts setup, be safe and back them up (if your computer crashes, you will lose your
balance if you do not have a backup). Click ‘Backup’ in the top menu. Choose the ‘keystore’ folder, opposite-click
on it / choose ‘copy’ (do NOT choose ‘cut’, that would be very bad). Navigate to your desktop, opposite-click in
a blank area and choose ‘paste’. You may want to rename this new copy of the ‘keystore’ folder to something like
‘Ethereum-keystore-backup-year-month-day’ so you have quick recognition of it later. At this point you can then
add the folder contents to a zip / rar file (and even password-protect the archive with another strong yet easy-to-
remember password if backing up online), copy it to a USB Drive, burn it to a CD / DVD, or upload it to online
storage (Dropbox / Google Drive / etc).

You now should add approximately no less than 0.02 ETH to your primary account (the account you will initiate
creation of a multisig wallet with). This is required for the transaction fee when you create the multisig wallet
contract. An additional 1 ETH (or more) is also needed, because Mist currently requires this to assure wallet
contract transactions have enough ‘gas’ to execute properly...so no less than about 1.02 ETH total for starters.

You will be entering the full addresses of all the accounts you are attaching to this multisig wallet, when you create
it. I recommend copying / pasting each address into a plain text editor (notepad / kedit / etc), after going to each
account’s details page in Mist, and choosing ‘copy address’ from the right-side column of buttons. Never type
an address by hand, or you run a very high risk of typos and could lose your balance sending transactions to the
wrong address.

48 Chapter 1. Contents

Ethereum Classic Documentation, Release 0.1

We are now ready to create the multisig wallet. Under ‘Wallet Contracts’, select ‘Add Wallet Contract’. Give it
a name, select the primary account owner, and choose ‘Multisignature Wallet Contract’. You will see something
like this appear:

“This is a joint account controlled by X owners. You can send up to X ether per day. Any transaction over that
daily limit requires the confirmation of X owners.”

Set whatever amount of owners (accounts) you are attaching to this multisig wallet, whatever you want for a daily
withdrawal limit (that only requires one account to withdrawal that amount), and how many owners (accounts) are
required to approve any withdrawal amount over the daily limit.

Now add the addresses of the accounts that you copied / pasted into your text editor earlier, confirm all your
settings are correct, and click ‘Create’ at the bottom. You will then need to enter your password to send the
transaction. In the “Wallet Contracts’ section it should show your new wallet, and say ‘creating’.

When wallet creation is complete, you should see your contract address on the screen. Select the entire address,
copy / paste it into a new text file in your text editor, and save the text file to your desktop as ‘Ethereum-Wallet-
Address.txt’, or whatever you want to name it.

Now all you need to do is backup the ‘Ethereum-Wallet-Address.txt’ file the same way you backed up your account
files, and then you are ready to load your new multisig wallet with ETH using this address.

If you are restoring from backup, simply copy the files inside the ‘Ethereum-keystore-backup’ folder over into the
‘keystore’ folder mentioned in the first section of this walkthrough. FYI, you may need to create the ‘keystore’
folder if it’s a brand new install of Mist on a machine it was never installed on before (the first time you create
an account is when this folder is created). As for restoring a multisig wallet, instead of choosing ‘Multisignature
Wallet Contract’ like we did before when creating it, we merely choose ‘Import Wallet’ instead.

Troubleshooting:

* Mist won’t sync. One solution that works well is syncing your PC hardware clock with an NTP server so
the time is exactly correct...then reboot.

* Mist starts after syncing, but is a blank white screen. Chances are you are running the “xorg” video drivers
on a Linux-based OS (Ubuntu, Linux Mint, etc). Try installing the manufacturer’s video driver instead.

* “Wrong password” notice. This seems to be a false notice on occasion on current Mist versions. Restart
Mist and the problem should go away (if you indeed entered the correct password).

Using Eth

Every options related to key management available using geth can be used the same way in eth.

Below are “account” related options:

> eth account list // List all keys available in wallet.

> eth account new // Create a new key and add it to the wallet.

> eth account update [<uuid>|<address> , ...] // Decrypt and re-encrypt given keys
>

eth account import [<uuid>|<file>|<secret-hex>] // Import keys from given source af

nd place in w

Below are “wallet” related option:

> eth wallet import <file> //Import a presale wallet.

Note: the ‘account import’ option can only be used to import generic key file. the ‘wallet import’ option can only
be used to import a presale wallet.

It is also possible to access keys management from the integrated console (using the built-in console or geth
attach):

> web3.personal

{

listAccounts: [],

1.3. Account Management 49

Ethereum Classic Documentation, Release 0.1

getListAccounts: function (callback),
lockAccount: function(),

newAccount: function(),
unlockAccount: function ()

Using EthKey (deprecated)
Ethkey is a CLI tool of the C++ implementation that allows you to interact with the Ethereum wallet. With it you
can list, inspect, create, delete and modify keys and inspect, create and sign transactions.

We will assume you have not yet run a client such as eth or anything in the Aleth series of clients. If you have,
you can skip this section. To create a wallet, run ethkey with the createwallet command:

> ethkey createwallet

Please enter a MASTER passphrase to protect your key store (make it strong!): You’ll be asked for a “master”
passphrase. This protects your privacy and acts as a default password for any keys. You’ll need to confirm it by
entering the same text again.

Note: Use a strong randomly generated password.

We can list the keys within the wallet simply by using the list command:

> ethkey list

No keys found.

We haven’t yet created any keys, and it’s telling us so! Let’s create one.

To create a key, we use the new command. To use it we must pass a name - this is the name we’ll give to this
account in the wallet. Let’s call it “test”:

> ethkey new test ‘

Enter a passphrase with which to secure this account (or nothing to use the master passphrase). It will prompt
you to enter a passphrase to protect this key. If you just press enter, it’ll use the default “master” passphrase.
Typically this means you won’t need to enter the passphrase for the key when you want to use the account (since
it remembers the master passphrase). In general, you should try to use a different passphrase for each key since
it prevents one compromised passphrase from giving access to other accounts. However, out of convenience you
might decide that for low-security accounts to use the same passphrase.

Here, let’s give it the incredibly imaginative passphrase of 123. (Never ever use simple passwords like this for
anything else than ephemeral test accounts). Once you enter a passphrase, it’ll ask you to confirm it by entering
again. Enter 123 a second time. Because you gave it its own passphrase, it’ll also ask you to provide a hint for
this password which will be displayed to you whenever it asks you to enter it. The hint is stored in the wallet and
is itself protected by the master passphrase. Enter the truly awful hint of 321 backwards.

> ethkey new test

Enter a passphrase with which to secure this account (or nothing to use the master pj
Please confirm the passphrase by entering it again:
Enter a hint to help you remember this passphrase: 321 backwards
Created key 055dde03-47ff-dded-8950-0£fe39b1falll

Name: test

Password hint: 321 backwards

ICAP: XE472EVKU3CGMJF2YQOJ9RO1Y90BCOLDFZ

Raw hex: 0092e965928626£8880629cec353d3fd7cab5974f

All normal (aka direct) ICAP addresses begin with XE so you should be able to recognize them easily. Notice
also that the key has another identifier after Created key. This is known as the UUID. This is a unique identifier

50 Chapter 1. Contents

nssphrase) :

Ethereum Classic Documentation, Release 0.1

for the key that has absolutely nothing to do with the account itself. Knowing it does nothing to help an attacker
discover who you are on the network. It also happens to be the filename for the key, which you can find in
either ~/.web3/keys (Mac or Linux) or SHOME/AppData/Web3/keys (Windows). Now let’s make sure it worked
properly by listing the keys in the wallet:

> ethkey list
055dde03-47ff-dded-8950-0£fe3901fal01l 0092e965... XE472EVKU3CGMJF2YQ0JO9RO1YS0BCOLDFZ

It reports one key on each line (for a total of one key here). In this case our key is stored in a file 055dde... and has
an ICAP address beginning XE472EVK.... Not especially easy things to remember so rather helpful that it has its
proper name, test, too.

1.3.4 Importing your presale wallet

Using Mist Ethereum wallet

Importing your presale wallet using the GUI Mist Ethereum wallet is very easy. In fact, you will be asked if you
want to import your presale wallet during the installation of the app.

Warning: Mist wallet is beta software. Beware and use it at your own risk.

Instructions for installing the Mist Ethereum wallet are given in the section Creating an account: Using Mist
Ethereum wallet.

Simply drag-and-drop your . json presale wallet file into the designated area and enter your password to import
your presale account.

N ~iEl
[j A fYy AR AV/ATREY. T A | ‘ /‘\‘t f A ?
O YOU nNave a wWalletTlle:
J
fyou participated on the Fthereurn e e e ey
Pre-sale 2014, you should have a file : :
named
ethereum wallet backup.json . It ! |
was downloaded after the sale and | - |
also sent to your email ! Drop pre-sale file !
1 1
1 1
1 1
1 1
L 4
BACK SKIP
12 peers

If you choose not to import your presale wallet during installation of the app, you can import it at any time by
selecting the Account s menu in the app’s menu bar and then selecting Import Pre-sale Accounts.

Note: The Mist wallet is still in active development, so details of the steps outlined above may change with
upgrades.

1.3. Account Management 51

test

Ethereum Classic Documentation, Release 0.1

Using geth

If you have a standalone installation of geth, importing your presale wallet is accomplished by executing the
following command in a terminal:

geth wallet import /path/to/my/presale-wallet. json

You will be prompted to enter your password.

1.3.5 Updating an account

You are able to upgrade your keyfile to the latest keyfile format and/or upgrade your keyfile password.

Using geth

You can update an existing account on the command line with the update subcommand with the account address
or index as parameter. Remember that the account index reflects the order of creation (lexicographic order of
keyfile names containing the creation time).

\geth account update b0047c606£3af7392e073ed13253£8£4710b08b6 \

or

’geth account update 2 ‘

For example:

$ geth account update a94f5374fce5edbc8e2a8697¢c15331677e6ebfl0b

Unlocking account a94f5374fce5edbc8e2a8697¢c15331677e6ebf0b | Attempt 1/3
Passphrase:

0xa94£f5374fcebedbc8e2a8697c15331677e6ebf0b

account 'a94f5374fcebedbc8e2a8697¢c15331677e6ebf0b' unlocked.

Please give a new password. Do not forget this password.

Passphrase:

Repeat Passphrase:

0xa94£f5374fcebedbc8e2a8697c15331677e6ebf0b

The account is saved in the newest version in encrypted format, you are prompted for a passphrase to unlock
the account and another to save the updated file. This same command can be used to migrate an account of a
deprecated format to the newest format or change the password for an account.

For non-interactive use the passphrase can be specified with the ——password flag:

geth --password <passwordfile> account update a94f5374fce5edbc8e2a8697c15331677e6ebf¢bs

Since only one password can be given, only format update can be performed, changing your password is only
possible interactively.

Note: account update has the side effect that the order of your accounts may change. After a successful update,
all previous formats/versions of that same key will be removed!

1.3.6 Backup and restore accounts

Manual backup/restore

You must have an account’s keyfile to be able to send any transaction from that account. Keyfiles are found in the
keystore subdirectory of your Ethereum node’s data directory. The default data directory locations are platform
specific:

52 Chapter 1. Contents

Ethereum Classic Documentation, Release 0.1

e Windows: C:\Users\username\%appdata%\Roaming\Ethereum\keystore
e Linux: ~/.ethereum/keystore
* Mac: ~/Library/Ethereum/keystore

To backup your keyfiles (accounts), copy either the individual keyfiles within the key st ore subdirectory or copy
the entire keystore folder.

To restore your keyfiles (accounts), copy the keyfiles back into the keystore subdirectory, where they were
originally.

Importing an unencrypted private key

Importing an unencrypted private key is supported by geth

‘geth account import /path/to/<keyfile>

This command imports an unencrypted private key from the plain text file <key file> and creates a new account
and prints the address. The keyfile is assumed to contain an unencrypted private key as canonical EC raw bytes
encoded into hex. The account is saved in encrypted format, you are prompted for a passphrase. You must
remember this passphrase to unlock your account in the future.

An example where the data directory is specified. If the ——datadir flag is not used, the new account will be
created in the default data directory, i.e., the keyfile will be places in the keyfiles subdirectory of the data
directory.

$ geth --datadir /someOtherEthDataDir account import ./key.prv
The new account will be encrypted with a passphrase.

Please enter a passphrase now.

Passphrase:

Repeat Passphrase:

Address: {7f444580bfef4b9bc7el4eb7fb2a029336b07c9d}

For non-interactive use the passphrase can be specified with the ——password flag:

geth —--password <passwordfile> account import <keyfile>

Note: Since you can directly copy your encrypted accounts to another Ethereum instance, this import/export
mechanism is not needed when you transfer an account between nodes.

Warning: When you copy keys into an existing node’s keystore, the order of accounts you are used to
may change. Therefore you make sure you either do not rely on the account order or double-check and update
the indexes used in your scripts.

1.4 Ether

1.4.1 What is ether?

Ether is the name of the currency used within Ethereum. It is used to pay for computation within the EVM. This
is done indirectly by purchasing gas for ether as explained in gas.

Denominations

Ethereum has a metric system of denominations used as units of Ether. Each denomination has its own unique
name (some bear the family name of seminal figures playing a role in evolution of computer science and cryp-
toeconomics). The smallest denomination aka base unit of Ether is called Wei. Below is a list of the named

1.4. Ether 53

Ethereum Classic Documentation, Release 0.1

denominations and their value in Wei. Following a common (although somewhat ambiguous) pattern, Ether also
designates a unit (of 1e18 or one quintillion Wei) of the currency. Note that the currency is not called Ethereum
as many mistakenly think, nor is Ethereum a unit.

Unit Wei Value | Wei

wei 1 wei 1

Kwei (babbage) 1e3 wei 1,000

Mwei (lovelace) le6 wei 1,000,000
Gwei (shannon) 1e9 wei 1,000,000,000

microether (szabo) | lel2 wei 1,000,000,000,000
milliether (finney) lel5 wei 1,000,000,000,000,000
ether lel8 wei 1,000,000,000,000,000,000

1.4.2 Ether supply

https://blog.ethereum.org/2014/04/10/the-issuance-model-in-ethereum/
* https://www.reddit.com/r/ethereum/comments/44zy88/clarification_on_ether_supply_and_cost_of_gas/
e https://www.reddit.com/r/ethereum/comments/45vj4g/question_about_scarcity_of_ethereum_and_its/

* https://www.reddit.com/r/ethtrader/comments/48yqg6/is_there_a_cap_like_with_btc_with_how_many_ether/

1.4.3 Getting ether

In order to obtain Ether, you need to either
* become an Ethereum miner (see Mining) or
* trade other currencies for Ether using centralised or trustless services

* use the user friendly Mist Ethereum GUI Wallet that as of Beta 6 introduced the ability to purchase ether
using the http://shapeshift.io/ APIL

Trustless services
Note that the Ethereum platform is special in that the smart contracts enable trustless services that obviate the need
for trusted third parties in a currency exchange transaction, ie. disintermediate currency exchange businesses.
Such projects (alpha/prelaunch status at the time of writing) are:
* BTCrelay
— More information (about ETH/BTC 2-way peg without modifying bitcoin code).
— BTCrelay audit

» EtherEx decentralised exchange.

54 Chapter 1. Contents

https://blog.ethereum.org/2014/04/10/the-issuance-model-in-ethereum/
https://www.reddit.com/r/ethereum/comments/44zy88/clarification_on_ether_supply_and_cost_of_gas/
https://www.reddit.com/r/ethereum/comments/45vj4g/question_about_scarcity_of_ethereum_and_its/
https://www.reddit.com/r/ethtrader/comments/48yqg6/is_there_a_cap_like_with_btc_with_how_many_ether/
https://github.com/ethereum/mist/releases
http://shapeshift.io/
http://btcrelay.org/
https://medium.com/@ConsenSys/taking-stock-bitcoin-and-ethereum-4382f0a2f17
http://martin.swende.se/blog/BTCRelay-Auditing.html
https://etherex.org

Ethereum Classic Documentation, Release 0.1

List of centralised exchange marketplaces

Exchange Currencies
Poloniex BTC

Kraken BTC, USD, EUR, CAD, GBP
Gatecoin BTC, EUR
Bitfinex BTC, USD

Bittrex BTC

Bluetrade BTC, LTC, DOGE
HitBTC BTC

Livecoin BTC

Coinsquare BTC

Bittylicious GBP

BTER CNY

Yunbi CNY
Metaexchange | BTC

Centralised fixed rate exchanges

Exchange | Currencies
Shapeshift BTC, LTC, DOGE, Other
Bity BTC, USD, EUR, CHF

Trading and price analytics

e ETH markets exhaustive listing by volume on coinmarketcap

* Aggregating realtime stats of major ETH markets:

Tradeblock

EthereumWisdom
Cryptocompare

Coinmarketcap

1.4.4 Online wallets, paper wallets, and cold storage

Todo

This is here just a dumping ground of links and notes Please move this over in a listing form to ecosystem

Keep examples here, maybe explain paranoid practices, list dangers

¢ Mist Ethereum Wallet

— Releases to download

— Mist Ethereum Wallet developer preview - foundation blog post

— How to easily set up the Ethereum Mist wallet! - Tutorial by Tommy Economics

¢ Kryptokit Jaxx

— Jaxx main site

— Mobile release

¢ Etherwall

1.4. Ether

55

https://bity.com
https://coinmarketcap.com/currencies/ethereum/#markets
https://tradeblock.com/ethereum
http://ethereumwisdom.com
https://www.cryptocompare.com/coins/eth/overview
https://coinmarketcap.com/currencies/ethereum/
https://github.com/ethereum/mist/releases
https://blog.ethereum.org/2015/09/16/ethereum-wallet-developer-preview/
https://www.youtube.com/watch?v=Z6lE0Ctaeqs
http://jaxx.io/
http://favs.pw/first-ethereum-mobile-app-released/#.VsHn_PGPL5c

Ethereum Classic Documentation, Release 0.1

— Etherwall website

— Etherwall source
MyEtherWallet

— MyEtherWallet website

— MyEtherWallet source
— Chrome extension
¢ Cold storage
— Icebox by ConsenSys - Cold storage based on lightwallet with HD wallet library integrated.
— Reddit discussion 1
— How to setup a cold storage wallet
* Hardware wallet
— reddit discussion 2
— reddit discussion 3
* Brain wallet
— brain wallets are not safe, do not use them. https://www.reddit.com/r/ethereum/comments/45y8m7/brain_wallets_ar

— Extreme caution with brain wallets. Read the recent contro-
versy: https://reddit.com/r/ethereum/comments/43fhb5/brainwallets Vs
http://blog.ether.camp/post/138376049438/why-brain-wallet-is-the-best

* Misc
— Kraken Wallet Sweeper Tool - Pre-sale wallet import
— Recommended ways to safely store ether
— How to buy and store ether
— A laymen’s intro into brute forcing and why not to use brain wallets
— Pyethsaletool

— Account vs wallet

1.4.5 Sending ether

The Ethereum Wallet supports sending ether via a graphical interface.

Ether can also be transferred using the geth console.

var sender = eth.accounts|[0];

var receiver = eth.accounts[1l];

var amount = web3.toWei(0.01, "ether")

eth.sendTransaction ({from:sender, to:receiver, value: amount})

vV V VYV

For more information of Ether transfer transactions, see Account Types, Gas, and Transactions.

Ethereum is unique in the realm of cryptocurrencies in that ether has utility value as a cryptofuel, commonly
referred to as “gas”. Beyond transaction fees, gas is a central part of every network request and requires the
sender to pay for the computing resources consumed. The gas cost is dynamically calculated, based on the volume
and complexity of the request and multiplied by the current gas price. Its value as a cryptofuel has the effect
of increasing the stability and long-term demand for ether and Ethereum as a whole. For more information, see
Account Types, Gas, and Transactions.

56 Chapter 1. Contents

http://www.etherwall.com/
https://github.com/almindor/etherwall
https://www.myetherwallet.com/
https://github.com/kvhnuke/etherwallet/
http://sebfor.com/myetherwallet-chrome-extension-release/
https://github.com/ConsenSys/icebox
https://consensys.net/
https://www.reddit.com/r/ethereum/comments/45uvmy/offline_cold_storage_question/offline_cold_storage_question
https://www.reddit.com/r/ethereum/comments/48wfbv/eli5_how_to_setup_a_cold_storage_wallet_as/
https://www.reddit.com/r/ethereum/comments/45siaq/hardware_wallet/
https://www.reddit.com/r/ethereum/comments/4521o4/crowdfunding_ethereum_hardware_cold_storage_wallet/
https://www.reddit.com/r/ethereum/comments/45y8m7/brain_wallets_are_now_generally_shunned_by/
https://reddit.com/r/ethereum/comments/43fhb5/brainwallets
http://blog.ether.camp/post/138376049438/why-brain-wallet-is-the-best
https://www.kraken.com/ether
http://ethereum.stackexchange.com/questions/1239/what-is-the-recommended-way-to-safely-store-ether
http://sebfor.com/how-to-buy-and-store-ether/
http://www.fastcompany.com/3056651/researchers-find-a-crack-that-drains-supposedly-secure-bitcoin-wallets
https://github.com/ethereum/pyethsaletool/blob/master/README.md
https://www.reddit.com/r/ethereum/comments/47j3r5/eli5_accounts_vs_wallet_contracts_on_mist/
https://github.com/ethereum/mist/releases

Ethereum Classic Documentation, Release 0.1

1.4.6 Gas and ether

* https://www.reddit.com/r/ethereum/comments/271qdz/can_someone_explain_the_concept_of_gas_in_ethereum/
* https://www.reddit.com/r/ethereum/comments/3fnpr1/can_someone_possibly_explain_the_concept_of/
e https://www.reddit.com/r/ethereum/comments/49gol3/can_ether_be_used_as_a_currency_eli5_ether_gas/

Gas is supposed to be the constant cost of network resources/utilisation. You want the real cost of sending a
transaction to always be the same, so you can’t really expect Gas to be issued, currencies in general are volatile.

So instead, we issue Ether whose value is supposed to vary, but also implement a Gas Price in terms of Ether. If
the price of Ether goes up, the Gas Price in terms of Ether should go down to keep the real cost of Gas the same.

Gas has multiple associated terms with it: Gas Prices, Gas Cost, Gas Limit, and Gas Fees. The principle behind
Gas is to have a stable value for how much a transaction or computation costs on the Ethereum network.

* Gas Cost is a static value for how much a computation costs in terms of Gas, and the intent is that the real
value of the Gas never changes, so this cost should always stay stable over time.

* Gas Price is how much Gas costs in terms of another currency or token like Ether. To stabilise the value
of gas, the Gas Price is a floating value such that if the cost of tokens or currency fluctuates, the Gas Price
changes to keep the same real value. The Gas Price is set by the equilibrium price of how much users are
willing to spend, and how much processing nodes are willing to accept.

* Gas Limit is the maximum amount of Gas that can be used per block, it is considered the maximum com-
putational load, transaction volume, or block size of a block, and miners can slowly change this value over
time.

* Gas Fee is effectively the amount of Gas needed to be paid to run a particular transaction or program (called
a contract). The Gas Fees of a block can be used to imply the computational load, transaction volume, or
size of a block. The gas fees are paid to the miners (or bonded contractors in PoS).

1.5 The Ethereum network

Network info.

1.5.1 Connecting to the Network

This section

The Ethereum network

The basis for decentralised consensus is the peer-to-peer network of participating nodes which maintain and secure
the blockchain. See Mining.

Ethereum network stats

EthStats.net is a dashboard of live statistics of the Ethereum network. This dashboard displays important informa-
tion such as the current block, hash difficulty, gas price, and gas spending. The nodes shown on the page are only
a selection of actual nodes on the network. Anyone is allowed to add their node to the EthStats dashboard. The
Eth-Netstats README on Github describes how to connect.

EtherNodes.com displays current and historical data on node count and other information on both the Ethereum
mainnet and Morden testnet.

Distribution of client implementations on the current live network - Realtime stats on EtherChain.

1.5. The Ethereum network 57

https://www.reddit.com/r/ethereum/comments/271qdz/can_someone_explain_the_concept_of_gas_in_ethereum/
https://www.reddit.com/r/ethereum/comments/3fnpr1/can_someone_possibly_explain_the_concept_of/
https://www.reddit.com/r/ethereum/comments/49gol3/can_ether_be_used_as_a_currency_eli5_ether_gas/
https://ethstats.net/
https://github.com/cubedro/eth-netstats
https://www.ethernodes.org/
https://etherchain.org/nodes

Ethereum Classic Documentation, Release 0.1

Public, private, and consortium blockchains

Most Ethereum projects today rely on Ethereum as a public blockchain, which grants access to a larger audience
of users, network nodes, currency, and markets. However, there are often reasons to prefer a private blockchain or
consortium blockchain (among a group of trusted participants). For example, a number of companies in verticals,
like banking, are looking to Ethereum as a platform for their own private blockchains.

Below is an excerpt from the blog post On Public and Private Blockchains that explains the difference between
the three types of blockchains based on permissioning:

* Public blockchains: a public blockchain is a blockchain that anyone in the world can read, anyone in the
world can send transactions to and expect to see them included if they are valid, and anyone in the world
can participate in the consensus process — the process for determining what blocks get added to the chain
and what the current state is. As a substitute for centralized or quasi-centralized trust, public blockchains
are secured by cryptoeconomics — the combination of economic incentives and cryptographic verification
using mechanisms such as proof of work or proof of stake, following a general principle that the degree to
which someone can have an influence in the consensus process is proportional to the quantity of economic
resources that they can bring to bear. These blockchains are generally considered to be “fully decentralized”.

* Consortium blockchains: a consortium blockchain is a blockchain where the consensus process is con-
trolled by a pre-selected set of nodes; for example, one might imagine a consortium of 15 financial insti-
tutions, each of which operates a node and of which 10 must sign every block in order for the block to be
valid. The right to read the blockchain may be public, or restricted to the participants, and there are also
hybrid routes such as the root hashes of the blocks being public together with an API that allows members
of the public to make a limited number of queries and get back cryptographic proofs of some parts of the
blockchain state. These blockchains may be considered “partially decentralized”.

* Private blockchains: a fully private blockchain is a blockchain where write permissions are kept centralized
to one organization. Read permissions may be public or restricted to an arbitrary extent. Likely applications
include database management, auditing, etc internal to a single company, and so public readability may not
be necessary in many cases at all, though in other cases public auditability is desired.

While these private/consortium blockchains may not have any connection to the public blockchain, they still
contribute to the overall Ethereum ecosystem by investing in Ethereum software development. Over time, this
translates into software improvements, shared knowledge, and job opportunities.

How to connect
Geth continuously attempts to connect to other nodes on the network until it has peers. If you have UPnP enabled
on your router or run Ethereum on an Internet-facing server, it will also accept connections from other nodes.

Geth finds peers through something called the discovery protocol. In the discovery protocol, nodes are gossipping
with each other to find out about other nodes on the network. In order to get going initially, geth uses a set of
bootstrap nodes whose endpoints are recorded in the source code.

Checking connectivity and ENODE IDs

To check how many peers the client is connected to in the interactive console, the net module has two attributes
that give you info about the number of peers and whether you are a listening node.

> net.listening
true

> net.peerCount
4

To get more information about the connected peers, such as IP address and port number, supported protocols, use
the peers () function of the admin object. admin.peers () returns the list of currently connected peers.

58 Chapter 1. Contents

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

Ethereum Classic Documentation, Release 0.1

> admin.peers
[{
ID: 'ad4de274d3al59el10c2c9a68c326511236381b84c9%ec52e72ad732eb0b2b1a2277938£7859
Name: 'Geth/v0.9.14/linux/gol.4.2"',
Caps: 'eth/60',
RemoteAddress: '5.9.150.40:30301",
LocalAddress: '192.168.0.28:39219'

cdbe734e6002]

ID: 'a979fb575495b8d6db44£750317d0£4622bf4c2aa3365d6af7c284339968eef29b69adldce72a4d8db5ebb

Name: 'Geth/v0.9.15/linux/gol.4.2"',
Caps: 'eth/60',

RemoteAddress: '52.16.188.185:30303",
LocalAddress: '192.168.0.28:50995"

ID: 'fébalfld9241d48138136ccf5baabc2c8b008435alc2bd009cab2fb8edbbc99leba36376beaee9d45£16d5

Name: 'pyethapp_dd52/v0.9.13/1linux2/py2.7.9"',
Caps: 'eth/60, p2p/3',
RemoteAddress: '144.76.62.101:30303"',
LocalAddress: '192.168.0.28:40454"

boo A

ID: 'f4642fa65af50cfdeaB8fa7414a5def7bb7991478b768e296f5e4a54e8b995del02e0ceae2e8261293¢c481b5325

Name: '++eth/Zeppelin/Rascal/v0.9.14/Release/Darwin/clang/int"',
Caps: 'eth/60, shh/2',

RemoteAddress: '129.16.191.64:30303"',

LocalAddress: '192.168.0.28:39705"

bl

To check the ports used by geth and also find your enode URI run:

> admin.nodeInfo

{
Name: 'Geth/v0.9.14/darwin/gol.4.2"',

NodeUrl: 'enode://3414c01cl9aa75a34f2dbd2f8d0898dc79d6b219ad77f8155abfla287ce2ba60tf14998a3a98c0:

NodeID: '3414c01cl9aa75a34f2dbd2£8d0898dc79d6b219ad77£8155abfla287ce2ba60£14998a3a
Ip: '::"',

DiscPort: 30303,

TCPPort: 30303,

Td: '2044952618444",

ListenAddr: '[::]:30303"

Download the blockchain faster

When you start an Ethereum client, the Ethereum blockchain is automatically downloaded. The time it takes to
download the Ethereum blockchain can vary based on client, client settings, connection speed, and number of
peers available. Below are some options for more quickly obtaining the Ethereum blockchain.

Using geth

If you are using the geth client, there are some things you can do to speed up the time it takes to download the
Ethereum blockchain. If you choose to use the ——fast flag to perform an Ethereum fast sync, you will not retain
past transaction data.

Note: You cannot use this flag after performing all or part of a normal sync operation, meaning you should
not have any portion of the Ethereum blockchain downloaded before using this command. See this Ethereum
Stack.Exchange answer for more information.

Below are some flags to use when you want to sync your client more quickly.

1.5. The Ethereum network 59

8c0cfl4915eal

http://ethereum.stackexchange.com/questions/1845/why-isnt-fast-sync-the-default
http://ethereum.stackexchange.com/questions/1845/why-isnt-fast-sync-the-default

Ethereum Classic Documentation, Release 0.1

——fast

This flag enables fast syncing through state downloads rather than downloading the full block data. This will
also reduce the size of your blockchain dramatically. NOTE: ——fast can only be run if you are syncing your
blockchain from scratch and only the first time you download the blockchain for security reasons. See this Reddit
post for more information.

——cache=1024

Megabytes of memory allocated to internal caching (min 16MB / database forced). Default is 16MB, so increasing
this to 256, 512, 1024 (1GB), or 2048 (2GB) depending on how much RAM your computer has should make a
difference.

——Jjitvm
This flag enables the JIT VM.

Full example command with console:

geth --fast --cache=1024 --jitvm console

For more discussion on fast syncing and blockchain download times, see this Reddit post.

Exporting/Importing the blockchain

If you already have a full Ethereum node synced, you can export the blockchain data from the fully synced node
and import it into your new node. You can accomplish this in geth by exporting your full node with the command
geth export filename and importing the blockchain into your node using geth import filename.
see this link

Static Nodes, Trusted Nodes, and Boot Nodes

Geth supports a feature called static nodes if you have certain peers you always want to connect to. Static nodes
are re-connected on disconnects. You can configure permanent static nodes by putting something like the fol-
lowing into <datadir>/static-nodes. json (this should be the same folder that your chaindata and
keystore folders are in)

[
"enode://f4642fa65af50cfdea8fa7414a5def7bb7991478b768e296£5e4a54e8b995del02e0cq
"enode://pubkey@ip:port"

]

rae2e826£293c

You can also add static nodes at runtime via the Javascript console using admin.addPeer ()

> admin.addPeer("enode://f4642fa65af50cfdea8fa7414a5def7bb7991478b768e296f5e4a54e8b9$5delOZeOceae

Common problems with connectivity

Sometimes you just can’t get connected. The most common reasons are:

* Your local time might be incorrect. An accurate clock is required to participate in the Ethereum network.
Check your OS for how to resync your clock (example sudo ntpdate -s time.nist.gov)because
even 12 seconds too fast can lead to O peers.

* Some firewall configurations can prevent UDP traffic from flowing. You can use the static nodes feature or
admin.addPeer () on the console to configure connections by hand.

To start geth without the discovery protocol, you can use the ——nodiscover parameter. You only want this if
you are running a test node or an experimental test network with fixed nodes.

60 Chapter 1. Contents

https://www.reddit.com/r/ethereum/comments/3y9316/geth_fast_option_question/
https://www.reddit.com/r/ethereum/comments/3y9316/geth_fast_option_question/
https://www.reddit.com/r/ethereum/comments/46c4ga/lets_benchmark_the_clients/

Ethereum Classic Documentation, Release 0.1

1.5.2 Test Networks

Morden testnet

Morden is a public Ethereum alternative testnet. It is expected to continue throughout the Frontier and Homestead
milestones of the software.

Usage

eth (C++ client) This is supported natively on 0.9.93 and above. Pass the ——morden argument in when starting
any of the clients. e.g.:

PyEthApp (Python client) PyEthApp supports the morden network from v1.0.5 onwards:
geth (Go client)

Details

All parameters are the same as the main Ethereum network except:
* Network Name: Morden
* Network Identity: 2
* genesis.json (given below);
* Initial Account Nonce (IAN) is 220 (instead of 0 in all previous networks).
— All accounts in the state trie have nonce >= IAN.
— Whenever an account is inserted into the state trie it is initialised with nonce = TAN.
* Genesis generic block hash: 0cd786a2425d16£152¢c658316¢c423e6cell181e15¢3295826d7¢9904cba9ce303
* Genesis generic state root: £3£4696bbf3b3b07775128eb7a3763279a394e382130£27¢c21e70233e04946a9

Morden’s genesis.json

Getting Morden testnet ether

Two ways to obtain Morden testnet ether:
* Mine using your CPU/GPU, (see Mining).

¢ Use the Ethereum wei faucet.

1.5.3 Setting up a local private testnet

eth (C++ client)

It is possible to connect to or create a new network by using the —genesis and —config.
It is possible to use both —config and —genesis.

In that case, the genesis block description provided by —config will be overwritten by the —genesis option.

Note: <filename> contains a JSON description of the network:

1.5. The Ethereum network 61

https://zerogox.com/ethereum/wei_faucet

Ethereum Classic Documentation, Release 0.1

* sealEngine (engine use to mine block)

“Ethash” is the Ethereum proof of work engine (used by the live network).

“NoProof” no proof of work is needed to mine a block.
* params (general network information like minGasLimit, minimumDifficulty, blockReward, networkID)
» genesis (genesis block description)

* accounts (setup an original state that contains accounts/contracts)

Here is a Config sample (used by the Olympic network):

Note: <filename> contains a JSON description of the genesis block:

The content is the same as the genesis field provided by the ‘config’ parameter:

geth (Go client)
You either pre-generate or mine your own Ether on a private testnet. It is a much more cost effective way of trying
out Ethereum and you can avoid having to mine or find Morden test ether.
The things that are required to specify in a private chain are:
¢ Custom Genesis File
* Custom Data Directory
¢ Custom NetworkID

* (Recommended) Disable Node Discovery

The genesis file

The genesis block is the start of the blockchain - the first block, block 0, and the only block that does not point to a
predecessor block. The protocol ensures that no other node will agree with your version of the blockchain unless
they have the same genesis block, so you can make as many private testnet blockchains as you’d like!

CustomGenesis. json

{
"nonce": "0x0000000000000042", "timestamp": "0x0",
"parentHash": "0x000
"extraData": "0x0", "gasLimit": "0x8000000", "difficulty": "0x400",
"mixhash": "0x00",
"coinbase": "0x33", "alloc": { }

}

Save a file called CustomGenesis. json. You will reference this when starting your geth node using the
following flag:

—-—genesis /path/to/CustomGenesis. json

Command line parameters for private network

There are some command line options (also called “flags™) that are necessary in order to make sure that your
network is private. We already covered the genesis flag, but we need a few more. Note that all of the commands
below are to be used in the geth Ethereum client.

——nodiscover

62 Chapter 1. Contents

Ethereum Classic Documentation, Release 0.1

Use this to make sure that your node is not discoverable by people who do not manually add you. Otherwise, there
is a chance that your node may be inadvertently added to a stranger’s blockchain if they have the same genesis file
and network id.

——maxpeers 0

Use maxpeers 0 if you do not want anyone else connecting to your test chain. Alternatively, you can adjust this
number if you know exactly how many peers you want connecting to your node.

--rpc
This will enable RPC interface on your node. This is generally enabled by default in Geth.
—-—rpcapi "db,eth,net,web3"

This dictates what APIs that are allowed to be accessed over RPC. By default, Geth enables the web3 interface
over RPC.

IMPORTANT: Please note that offering an API over the RPC/IPC interface will give everyone access to the
API who can access this interface (e.g. dapp’s). Be careful which API’s you enable. By default geth enables
all API’s over the IPC interface and only the db,eth,net and web3 API’s over the RPC interface.

—-—rpcport "8080"
Change 8000 to any port that is open on your network. The default for geth is 8080.
——rpccorsdomain "http://chriseth.github.io/browser-solidity/"

This dictates what URLs can connect to your node in order to perform RPC client tasks. Be very careful with
this and type a specific URL rather than the wildcard (*) which would allow any URL to connect to your RPC
instance.

——datadir "/home/TestChainl"

This is the data directory that your private chain data will be stored in (under the nubits . Choose a location that
is separate from your public Ethereum chain folder.

—-—port "30303"
This is the “network listening port”, which you will use to connect with other peers manually.
——identity "TestnetMainNode"

This will set up an identity for your node so it can be identified more easily in a list of peers. Here is an example
of how these identities show up on the network.

Launching geth

After you have created your custom genesis block JSON file and created a directory for your blockchain data, type
the following command into your console that has access to geth:

geth --identity "MyNodeName" --genesis /path/to/CustomGenesis.json —--rpc —-rpcport "$O80" —-—rpcco

Note: Please change the flags to match your custom settings.

You will need to start your geth instance with your custom chain command every time you want to access your
custom chain. If you just type “geth” in your console, it will not remember all of the flags you have set.

Pre-allocating ether to your account

A difficulty of “0x400” allows you to mine Ether very quickly on your private testnet chain. If you create your
chain and start mining, you should have hundreds of Ether in a matter of minutes which is way more than enough
to test transactions on your network. If you would still like to pre-allocate Ether to your account, you will need to:

1.5. The Ethereum network 63

Ethereum Classic Documentation, Release 0.1

1. Create a new Ethereum account after you create your private chain
2. Copy your new account address

3. Add the following command to your Custom_Genesis.json file:

"alloc":

{
"<your account address e.g. 0x1fb891£f92eb557£4d688463d0d7¢c560552263b5a>":

{ "balance": "20000000000000000000" }

Note: Replace 0x1fb891£92eb557£4d688463d0d7¢c560552263b5a with your account address.

Save your genesis file and rerun your private chain command. Once geth is fully loaded, close it by .
We want to assign an address to the variable primary and check its balance.

Run the command geth account list in your terminal to see what account # your new address was as-
signed.

> geth account list

Account #0: {dlade25ccd3d550a7eb532ac759cac7be09c2719}
Account #1: {da65665fc30803cblfb7e6d86691e20b1826deel}
Account #2: {ed470bla7d2c9c5c6f03bbaa8fa20db6d404a0c32}
Account #3: {£f4dd5c3794f1fd0cdc0327a83aa472609c806e99}

Take note of which account # is the one that you pre-allocated Ether to. Alternatively, you can launch the console
with geth console (keep the same parameters as when you launched geth first). Once the prompt appears,

type

’> eth.accounts

This will return the array of account addresses you possess.

‘> primary = eth.accounts[0]

Note: Replace 0 with your account’s index. This console command should return your primary Ethereum
address.

Type the following command:

> balance = web3.fromWei (eth.getBalance (primary), "ether");

This should return 7.5 indicating you have that much Ether in your account. The reason we had to put such a
large number in the alloc section of your genesis file is because the “balance” field takes a number in wei which is
the smallest denomination of the Ethereum currency Ether (see Ether).

e https://www.reddit.com/r/ethereum/comments/3kdnus/question_about_private_chain_mining_dont_upvote/

* http://adeduke.com/2015/08/how-to-create-a-private-ethereum-chain/

1.6 Mining

1.6.1 Introduction

The word mining originates in the context of the gold analogy for crypto currencies. Gold or precious metals are
scarce, so are digital tokens, and the only way to increase the total volume is through mining. This is appropriate
to the extent that in Ethereum too, the only mode of issuance post launch is via mining. Unlike these examples

64 Chapter 1. Contents

https://www.reddit.com/r/ethereum/comments/3kdnus/question_about_private_chain_mining_dont_upvote/
http://adeduke.com/2015/08/how-to-create-a-private-ethereum-chain/

Ethereum Classic Documentation, Release 0.1

however, mining is also the way to secure the network by creating, verifying, publishing and propagating blocks
in the blockchain.

* Mining Ether = Securing the Network = Verifying Computation

What is mining?

Ethereum, like all blockchain technologies, uses an incentive-driven model of security. Consensus is based on
choosing the block with the highest total difficulty. Miners produce blocks which the others check for validity.
Among other well-formedness criteria, a block is only valid if it contains proof of work (PoW) of a given difficulty.
Note that in the Ethereum Serenity milestone, this is likely going to be replaced by a (see proof of stake model).

The Ethereum blockchain is in many ways similar to the Bitcoin blockchain, although it does have some dif-
ferences. The main difference between Ethereum and Bitcoin with regard to the blockchain architecture is that,
unlike Bitcoin, Ethereum blocks contain a copy of both the transaction list and the most recent state (the root hash
of the merkle patricia trie encoding the state to be more precise). Aside from that, two other values, the block
number and the difficulty, are also stored in the block.

The proof of work algorithm used is called Ethash (a modified version of the Dagger-Hashimoto algorithm) and
involves finding a nonce input to the algorithm so that the result is below a certain difficulty threshold. The point
in PoW algorithms is that there is no better strategy to find such a nonce than enumerating the possibilities, while
verification of a solution is trivial and cheap. Since outputs have a uniform distribution (as they are the result of the
application of a hash function), we can guarantee that, on average, the time needed to find such a nonce depends
on the difficulty threshold. This makes it possible to control the time of finding a new block just by manipulating
the difficulty.

As dictated by the protocol, the difficulty dynamically adjusts in such a way that on average one block is produced
by the entire network every 15 seconds. We say that the network produces a blockchain with a 15 second block
time. This “heartbeat” basically punctuates the synchronisation of system state and guarantees that maintaining a
fork (to allow double spend) or rewriting history by malicious actors are impossible unless the attacker possesses
more than half of the network mining power (this is the so called 51 % attack).

Any node participating in the network can be a miner and their expected revenue from mining will be directly
proportional to their (relative) mining power or hashrate, i.e., the number of nonces tried per second normalised
by the total hashrate of the network.

Ethash PoW is memory hard, making it ASIC resistant. Memory hardness is achieved with a proof of work
algorithm that requires choosing subsets of a fixed resource dependent on the nonce and block header. This
resource (a few gigabyte size data) is called a DAG. The DAG is totally different every 30000 blocks, a 125-hour
window called epoch (roughly 5.2 days) and takes a while to generate. Since the DAG only depends on block
height, it can be pregenerated but if its not, the client needs to wait until the end of this process to produce a block.
If clients do not pregenerate and cache DAGs ahead of time the network may experience massive block delay on
each epoch transition. Note that the DAG does not need to be generated for verifying the PoW essentially allowing
for verification with both low CPU and small memory.

As a special case, when you start up your node from scratch, mining will only start once the DAG is built for the
current epoch.

Mining rewards

The successful PoW miner of the winning block receives:
* a static block reward for the ‘winning’ block, consisting of exactly 5.0 Ether
* cost of the gas expended within the block — an amount of ether that depends on the current gas price
* an extra reward for including uncles as part of the block, in the form of an extra 1/32 per uncle included

All the gas consumed by the execution of all the transactions in the block submitted by the winning miner is paid
by the senders of each transaction. The gas cost incurred is credited to the miner’