
EOS.IO Technical White Paper

June 26, 2017

Abstract: The EOS.IO software introduces a new blockchain architecture

designed to enable vertical and horizontal scaling of decentralized

applications. This is achieved by creating an operating system-like construct

upon which applications can be built. The software provides accounts,

authentication, databases, asynchronous communication and the scheduling

of applications across hundreds of CPU cores or clusters. The resulting

technology is a blockchain architecture that scales to millions of transactions

per second, eliminates user fees, and allows for quick and easy deployment of

decentralized applications.

PLEASE NOTE: CRYPTOGRAPHIC TOKENS REFERRED TO IN THIS WHITE

PAPER REFER TO CRYPTOGRAPHIC TOKENS ON A LAUNCHED

BLOCKCHAIN THAT ADOPTS THE EOS.IO SOFTWARE. THEY DO NOT

REFER TO THE ERC-20 COMPATIBLE TOKENS BEING DISTRIBUTED ON

THE ETHEREUM BLOCKCHAIN IN CONNECTION WITH THE EOS TOKEN

DISTRIBUTION.

Copyright © 2017 block.one

Without permission, anyone may use, reproduce or distribute any material in

this white paper for non-commercial and educational use (i.e., other than for a

fee or for commercial purposes) provided that the original source and the

applicable copyright notice are cited.

DISCLAIMER: This EOS.IO Technical White Paper is for information purposes

only. block.one does not guarantee the accuracy of or the conclusions reached

in this white paper, and this white paper is provided “as is”. block.one does

not make and expressly disclaims all representations and warranties, express,

implied, statutory or otherwise, whatsoever, including, but not limited to: (i)

warranties of merchantability, fitness for a particular purpose, suitability,

usage, title or noninfringement; (ii) that the contents of this white paper are

free from error; and (iii) that such contents will not infringe third-party rights.

block.one and its affiliates shall have no liability for damages of any kind

arising out of the use, reference to, or reliance on this white paper or any of

the content contained herein, even if advised of the possibility of such

damages. In no event will block.one or its affiliates be liable to any person or

entity for any damages, losses, liabilities, costs or expenses of any kind,

whether direct or indirect, consequential, compensatory, incidental, actual,

exemplary, punitive or special for the use of, reference to, or reliance on this

white paper or any of the content contained herein, including, without

limitation, any loss of business, revenues, profits, data, use, goodwill or other

intangible losses.

 Background

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#background

 Requirements for Blockchain Applications

o Support Millions of Users

o Free Usage

o Easy Upgrades and Bug Recovery

o Low Latency

o Sequential Performance

o Parallel Performance

 Consensus Algorithm (DPOS)

o Transaction Confirmation

o Transaction as Proof of Stake (TaPoS)

 Accounts

o Messages & Handlers

o Role Based Permission Management

 Named Permission Levels

 Named Message Handler Groups

 Permission Mapping

 Evaluating Permissions

 Default Permission Groups

 Parallel Evaluation of Permissions

o Messages with Mandatory Delay

o Recovery from Stolen Keys

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#requirements-for-blockchain-applications
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#support-millions-of-users
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#free-usage
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#easy-upgrades-and-bug-recovery
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#low-latency
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#sequential-performance
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#parallel-performance
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#consensus-algorithm--dpos-
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#transaction-confirmation
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#transaction-as-proof-of-stake--tapos-
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#accounts
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#messages---handlers
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#role-based-permission-management
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#named-permission-levels
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#named-message-handler-groups
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#permission-mapping
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#evaluating-permissions
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#default-permission-groups
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#parallel-evaluation-of-permissions
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#messages-with-mandatory-delay
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#recovery-from-stolen-keys

 Deterministic Parallel Execution of Applications

o Minimizing Communication Latency

o Read-Only Message Handlers

o Atomic Transactions with Multiple Accounts

o Partial Evaluation of Blockchain State

o Subjective Best Effort Scheduling

 Token Model and Resource Usage

o Objective and Subjective Measurements

o Receiver Pays

o Delegating Capacity

o Separating Transaction costs from Token Value

o State Storage Costs

o Block Rewards

o Community Benefit Applications

 Governance

o Freezing Accounts

o Changing Account Code

o Constitution

o Upgrading the Protocol & Constitution

 Emergency Changes

 Scripts & Virtual Machines

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#deterministic-parallel-execution-of-applications
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#minimizing-communication-latency
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#read-only-message-handlers
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#atomic-transactions-with-multiple-accounts
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#partial-evaluation-of-blockchain-state
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#subjective-best-effort-scheduling
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#token-model-and-resource-usage
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#objective-and-subjective-measurements
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#receiver-pays
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#delegating-capacity
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#separating-transaction-costs-from-token-value
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#state-storage-costs
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#block-rewards
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#community-benefit-applications
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#governance
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#freezing-accounts
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#changing-account-code
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#constitution
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#upgrading-the-protocol---constitution
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#emergency-changes
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#scripts---virtual-machines

o Schema Defined Messages

o Schema Defined Database

o Separating Authentication from Application

o Virtual Machine Independent Architecture

 Web Assembly

 Ethereum Virtual Machine (EVM)

 Inter Blockchain Communication

o Merkle Proofs for Light Client Validation (LCV)

o Latency of Interchain Communication

o Proof of Completeness

 Conclusion

Background

Blockchain technology was introduced in 2008 with the launch of the bitcoin

currency, and since then entrepreneurs and developers have been attempting

to generalize the technology in order to support a wider range of applications

on a single blockchain platform.

While a number of blockchain platforms have struggled to support functional

decentralized applications, application specific blockchains such as the

BitShares decentralized exchange (2014) and Steem social media platform

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#schema-defined-messages
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#schema-defined-database
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#separating-authentication-from-application
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#virtual-machine-independent-architecture
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#web-assembly
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#ethereum-virtual-machine--evm-
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#inter-blockchain-communication
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#merkle-proofs-for-light-client-validation--lcv-
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#latency-of-interchain-communication
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#proof-of-completeness
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#conclusion

(2016) have become heavily used blockchains with tens of thousands of daily

active users. They have achieved this by increasing performance to thousands

of transactions per second, reducing latency to 1.5 seconds, eliminating fees,

and providing a user experience similar to those currently provided by existing

centralized services.

Existing blockchain platforms are burdened by large fees and limited

computational capacity that prevent widespread blockchain adoption.

Requirements for Blockchain

Applications

In order to gain widespread use, applications on the blockchain require a

platform that is flexible enough to meet the following requirements:

Support Millions of Users

Disrupting businesses such as Ebay, Uber, AirBnB, and Facebook, require

blockchain technology capable of handling tens of millions of active daily

users. In certain cases, applications may not work unless a critical mass of

users is reached and therefore a platform that can handle mass number of

users is paramount.

Free Usage

Application developers need the flexibility to offer users free services; users

should not have to pay in order to use the platform or benefit from its

services. A blockchain platform that is free to use for users will likely gain

more widespread adoption. Developers and businesses can then create

effective monetization strategies.

Easy Upgrades and Bug Recovery

Businesses building blockchain based applications need the flexibility to

enhance their applications with new features.

All non-trivial software is subject to bugs, even with the most rigorous of

formal verification. The platform must be robust enough to fix bugs when they

inevitably occur.

Low Latency

A good user experience demands reliable feedback with delay of no more

than a few seconds. Longer delays frustrate users and make applications built

on a blockchain less competitive with existing non-blockchain alternatives.

Sequential Performance

There are some applications that just cannot be implemented with parallel

algorithms due to sequentially dependent steps. Applications such as

exchanges need enough sequential performance to handle high volumes and

therefore a platform with fast sequential performance is required.

Parallel Performance

Large scale applications need to divide the workload across multiple CPUs and

computers.

Consensus Algorithm (DPOS)

EOS.IO software utilizes the only decentralized consensus algorithm capable

of meeting the performance requirements of applications on the

blockchain, Delegated Proof of Stake (DPOS). Under this algorithm, those who

hold tokens on a blockchain adopting the EOS.IO software may select block

producers through a continuous approval voting system and anyone may

choose to participate in block production and will be given an opportunity to

produce blocks proportional to the total votes they have received relative to

all other producers. For private blockchains the management could use the

tokens to add and remove IT staff.

The EOS.IO software enables blocks to be produced exactly every 3 seconds

and exactly one producer is authorized to produce a block at any given point

in time. If the block is not produced at the scheduled time then the block for

https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper

that time slot is skipped. When one or more blocks are skipped, there is a 6 or

more second gap in the blockchain.

Using the EOS.IO software blocks are produced in rounds of 21. At the start of

each round 21 unique block producers are chosen. The top 20 by total

approval are automatically chosen every round and the last producer is

chosen proportional to their number of votes relative to other producers. The

selected producers are shuffled using a pseudorandom number derived from

the block time. This shuffling is done to ensure that all producers maintain

balanced connectivity to all other producers.

If a producer misses a block and has not produced any block within the last 24

hours they are removed from consideration until they notify the blockchain of

their intention to start producing blocks again. This ensures the network

operates smoothly by minimizing the number of blocks missed by not

scheduling those who are proven to be unreliable.

Under normal conditions a DPOS blockchain does not experience any forks

because the block producers cooperate to produce blocks rather than

compete. In the event there is a fork, consensus will automatically switch to

the longest chain. This metric works because the rate at which blocks are

added to a blockchain chain fork is directly correlated to the percentage of

block producers that share the same consensus. In other words, a blockchain

fork with more producers on it will grow in length faster than one with fewer

producers. Furthermore, no block producer should be producing blocks on

two forks at the same time. If a block producer is caught doing this then such

block producer will likely be voted out. Cryptographic evidence of such

double-production may also be used to automatically remove abusers.

Transaction Confirmation

Typical DPOS blockchains have 100% block producer participation. A

transaction can be considered confirmed with 99.9% certainty after an average

of 1.5 seconds from time of broadcast.

There are some extraordinary cases where a software bug, Internet

congestion, or a malicious block producer will create two or more forks. For

absolute certainty that a transaction is irreversible, a node may choose to wait

for confirmation by 15 out of the 21 block producers. Based on a typical

configuration of the EOS.IO software, this will take an average of 45 seconds

under normal circumstances. By default all nodes will consider a block

confirmed by 15 of 21 producers irreversible and will not switch to a fork that

excludes such a block regardless of length.

It is possible for a node to warn users that there is a high probability that they

are on a minority fork within 9 seconds of the start of a fork. After 2

consecutive missed blocks there is a 95% probability a node is on a minority

fork. With 3 consecutive missed blocks there is a 99% certainty of being on a

minority fork. It is possible to generate a robust predictive model that will

utilize information about which nodes missed, recent participation rates, and

other factors to quickly warn operators that something is wrong.

The response to such a warning depends entirely upon the nature of the

business transactions, but the simplest response is to wait for 15/21

confirmations until the warning stops.

Transaction as Proof of Stake (TaPoS)

The EOS.IO software requires every transaction to include the hash of a recent

block header. This hash serves two purposes:

1. prevents a replay of a transaction on forks that do not include the

referenced block; and

2. signals the network that a particular user and their stake are on a

specific fork.

Over time all users end up directly confirming the blockchain which makes it

difficult to forge counterfeit chains as the counterfeit would not be able to

migrate transactions from the legitimate chain.

Accounts

The EOS.IO software permits all accounts to be referenced by a unique human

readable name of 2 to 32 characters in length. The name is chosen by the

creator of the account. All accounts must be funded with the minimal account

balance at the time they are created to cover the cost of storing account data.

Account names also support namespaces such that the owner of account

@domain is the only one who can create the account @user.domain.

In a decentralized context, application developers will pay the nominal cost of

account creation to sign up a new user. Traditional businesses already spend

significant sums of money per customer they acquire in the form of

advertising, free services, etc. The cost of funding a new blockchain account

should be insignificant in comparison. Fortunately, there is no need to create

accounts for users already signed up by another application.

Messages & Handlers

Each account can send structured messages to other accounts and may define

scripts to handle messages when they are received. The EOS.IO software gives

each account its own private database which can only be accessed by its own

message handlers. Message handling scripts can also send messages to other

accounts. The combination of messages and automated message handlers is

how EOS.IO defines smart contracts.

Role Based Permission Management

Permission management involves determining whether or not a message is

properly authorized. The simplest form of permission management is checking

that a transaction has the required signatures, but this implies that required

signatures are already known. Generally authority is bound to individuals or

groups of individuals and is often compartmentalized. The EOS.IO software

provides a declarative permission management system that gives accounts

fine grained and high level control over who can do what and when.

It is critical that authentication and permission management be standardized

and separated from the business logic of the application. This enables tools to

be developed to manage permissions in a general purpose manner and also

provide significant opportunities for performance optimization.

Every account may be controlled by any weighted combination of other

accounts and private keys. This creates a hierarchical authority structure that

reflects how permissions are organized in reality, and makes multi-user

control over funds easier than ever. Multi-user control is the single biggest

contributor to security, and, when used properly, it can greatly reduce the risk

of theft due to hacking.

EOS.IO software allows accounts to define what combination of keys and/or

accounts can send a particular message type to another account. For example,

it is possible to have one key for a user's social media account and another for

access to the exchange. It is even possible to give other accounts permission

to act on behalf of a user's account without assigning them keys.

Named Permission Levels

Using the EOS.IO software, accounts can define named permission levels each

of which can be derived from higher level named permissions. Each named

permission level defines an authority; an authority is a threshold multi-

signature check consisting of keys and/or named permission levels of other

accounts. For example, an account's "Friend" permission level can be set for

the account to be controlled equally by any of the account's friends.

Another example is the Steem blockchain which has three hard-coded named

permission levels: owner, active, and posting. The posting permission can only

perform social actions such as voting and posting, while the active permission

can do everything except change the owner. The owner permission is meant

for cold storage and is able to do everything. The EOS.IO software generalizes

this concept by allowing each account holder to define their own hierarchy as

well as the grouping of actions.

Named Message Handler Groups

https://camo.githubusercontent.com/6fc705d33e56868cb03f5e307299837f5b91f20d/687474703a2f2f656f732e696f2f7770696d672f6469616772616d332e706e67

The EOS.IO software allows each account to organize its own message

handlers into named and nested groups. These named message handler

groups can be referenced by other accounts when they configure their

permission levels.

The highest level message handler group is the account name and the lowest

level is the individual message type being received by the account. These

groups can be referenced like

so: @accountname.groupa.subgroupb.MessageType.

Under this model it is possible for an exchange contract to group order

creation and canceling separately from deposit and withdraw. This grouping

by the exchange contract is a convenience for users of the exchange.

Permission Mapping

EOS.IO software allows each account to define a mapping between a Named

Message Handler Group of any account and their own Named Permission

Level. For example, an account holder could map the account holder's social

media application to the account holder's "Friend" permission group. With this

mapping, any friend could post as the account holder on the account holder's

social media. Even though they would post as the account holder, they would

still use their own keys to sign the message. This means it is always possible to

identify which friends used the account and in what way.

Evaluating Permissions

When delivering a message of type "Action", from @alice to @bob the

EOS.IO software will first check to see if @alice has defined a permission

mapping for @bob.groupa.subgroup.Action. If nothing is found then a

mapping for @bob.groupa.subgroup then @bob.groupa, and

lastly @bob will be checked. If no further match is found, then the assumed

mapping will be to the named permission group @alice.active.

Once a mapping is identified then signing authority is validated using the

threshold multi-signature process and the authority associated with the

named permission. If that fails, then it traverses up to the parent permission

and ultimately to the owner permission, @alice.owner.

https://camo.githubusercontent.com/8cd91b490fed0c94369251791eb25d74bcf54460/687474703a2f2f656f732e696f2f7770696d672f6469616772616d32677261797363616c65322e6a7067

Default Permission Groups

The EOS.IO technology also allows all accounts to have an "owner" group

which can do everything, and an "active" group which can do everything

except change the owner group. All other permission groups are derived from

"active".

Parallel Evaluation of Permissions

The permission evaluation process is "read-only" and changes to permissions

made by transactions do not take effect until the end of a block. This means

that all keys and permission evaluation for all transactions can be executed in

parallel. Furthermore, this means that a rapid validation of permission is

possible without starting the costly application logic that would have to be

rolled back. Lastly, it means that transaction permissions can be evaluated as

pending transactions are received and do not need to be re-evaluated as they

are applied.

All things considered, permission verification represents a significant

percentage of the computation required to validate transactions. Making this

a read-only and trivially parallelizable process enables a dramatic increase in

performance.

When replaying the blockchain to regenerate the deterministic state from the

log of messages there is no need to evaluate the permissions again. The fact

that a transaction is included in a known good block is sufficient to skip this

step. This dramatically reduces the computational load associated with

replaying an ever growing blockchain.

Messages with Mandatory Delay

Time is a critical component of security. In most cases, it is not possible to

know if a private key has been stolen until it has been used. Time based

security is even more critical when people have applications that require keys

be kept on computers connected to the internet for daily use. The EOS.IO

software enables application developers to indicate that certain messages

must wait a minimum period of time after being included in a block before

they can be applied. During this time they can be cancelled.

Users can then receive notice via email or text message when one of these

messages is broadcast. If they did not authorize it, then they can use the

account recovery process to recover their account and retract the message.

The required delay depends upon how sensitive an operation is. Paying for a

coffee can have no delay and be irreversible in seconds, while buying a house

may require a 72 hour clearing period. Transferring an entire account to new

control may take up to 30 days. The exact delays chosen are up to application

developers and users.

Recovery from Stolen Keys

The EOS.IO software provides users a way to restore control of their account

when their keys are stolen. An account owner can use any owner key that was

active in the last 30 days along with approval from their designated account

recovery partner to reset the owner key on their account. The account

recovery partner cannot reset control of the account without the help of the

owner.

There is nothing for the hacker to gain by attempting to go through the

recovery process because they already "control" the account. Furthermore, if

they did go through the process, the recovery partner would likely demand

identification and multi-factor authentication (phone and email). This would

likely compromise the hacker or gain the hacker nothing in the process.

This process is also very different from a simple multi-signature arrangement.

With a multi-signature transaction, there is another company that is party to

every transaction that is executed, but with the recovery process the agent is

only a party to the recovery process and has no power over the day-to-day

transactions. This dramatically reduces costs and legal liabilities for everyone

involved.

Deterministic Parallel Execution of

Applications

Blockchain consensus depends upon deterministic (reproducible) behavior.

This means all parallel execution must be free from the use of mutexes or

other locking primitives. Without locks there must be some way to guarantee

that all accounts can only read and write their own private database. It also

means that each account processes messages sequentially and that

parallelism will be at the account level.

In an EOS.IO software-based blockchain, it is the job of the block producer to

organize message delivery into independent threads so that they can be

evaluated in parallel. The state of each account depends only upon the

messages delivered to it. The schedule is the output of a block producer and

will be deterministically executed, but the process for generating the schedule

need not be deterministic. This means that block producers can utilize parallel

algorithms to schedule transactions.

Part of parallel execution means that when a script generates a new message

it does not get delivered immediately, instead it is scheduled to be delivered

in the next cycle. The reason it cannot be delivered immediately is because the

receiver may be actively modifying its own state in another thread.

Minimizing Communication Latency

Latency is the time it takes for one account to send a message to another

account and then receive a response. The goal is to enable two accounts to

exchange messages back and forth within a single block without having to

wait 3 seconds between each message. To enable this, the EOS.IO software

divides each block into cycles. Each cycle is divided into threads and each

thread contains a list of transactions. Each transaction contains a set of

messages to be delivered. This structure can be visualized as a tree where

alternating layers are processed sequentially and in parallel.

 Block

 Cycles (sequential)

 Threads (parallel)

 Transactions (sequential)

 Messages (sequential)

 Receiver and Notified Accounts (parallel)

Transactions generated in one cycle can be delivered in any subsequent cycle

or block. Block producers will keep adding cycles to a block until the

maximum wall clock time has passed or there are no new generated

transactions to deliver.

It is possible to use static analysis of a block to verify that within a given cycle

no two threads contain transactions that modify the same account. So long as

that invariant is maintained a block can be processed by running all threads in

parallel.

Read-Only Message Handlers

Some accounts may be able to process a message on a pass/fail basis without

modifying their internal state. If this is the case then these handlers can be

executed in parallel so long as only read-only message handlers for a

particular account are included in one or more threads within a particular

cycle.

Atomic Transactions with Multiple Accounts

Sometimes it is desirable to ensure that messages are delivered to and

accepted by multiple accounts atomically. In this case both messages are

placed in one transaction and both accounts will be assigned the same thread

and the messages applied sequentially. This situation is not ideal for

performance and when it comes to "billing" users for usage, they will get

billed by the number of unique accounts referenced by a transaction.

For performance and cost reasons it is best to minimize atomic operations

involving two or more heavily utilized accounts.

Partial Evaluation of Blockchain State

Scaling blockchain technology necessitates that components are modular.

Everyone should not have to run everything, especially if they only need to

use a small subset of the applications.

An exchange application developer runs full nodes for the purpose of

displaying the exchange state to its users. This exchange application has no

need for the state associated with social media applications. EOS.IO software

allows any full node to pick any subset of applications to run. Messages

delivered to other applications are safely ignored because an application's

state is derived entirely from the messages that are delivered to it.

This has some significant implications on communication with other accounts.

Most significantly it cannot be assumed that the state of the other account is

accessible on the same machine. It also means that while it is tempting to

enable "locks" that allow one account to synchronously call another account,

this design pattern breaks down if the other account is not resident in

memory.

All state communication among accounts must be passed via messages

included in the blockchain.

Subjective Best Effort Scheduling

The EOS.IO software cannot obligate block producers to deliver any message

to any other account. Each block producer makes their own subjective

measurement of the computational complexity and time required to process a

transaction. This applies whether a transaction is generated by a user or

automatically by a script.

On a launched blockchain adopting the EOS.IO software, at a network level all

transactions are billed a fixed computational bandwidth cost regardless of

whether it took .01ms or a full 10 ms to execute it. However, each individual

block producer using the software may calculate resource usage using their

own algorithm and measurements. When a block producer concludes that a

transaction or account has consumed a disproportionate amount of the

computational capacity they simply reject the transaction when producing

their own block; however, they will still process the transaction if other block

producers consider it valid.

In general so long as even 1 block producer considers a transaction as valid

and under the resource usage limits then all other block producers will also

accept it, but it may take up to 1 minute for the transaction to find that

producer.

In some cases a producer may create a block that includes transactions that

are an order of magnitude outside of acceptable ranges. In this case the next

block producer may opt to reject the block and the tie will be broken by the

third producer. This is no different than what would happen if a large block

caused network propagation delays. The community would notice a pattern of

abuse and eventually remove votes from the rogue producer.

This subjective evaluation of computational cost frees the blockchain from

having to precisely and deterministically measure how long something takes

to run. With this design there is no need to precisely count instructions which

dramatically increases opportunities for optimization without breaking

consensus.

Token Model and Resource Usage

PLEASE NOTE: CRYPTOGRAPHIC TOKENS REFERRED TO IN THIS WHITE

PAPER REFER TO CRYPTOGRAPHIC TOKENS ON A LAUNCHED

BLOCKCHAIN THAT ADOPTS THE EOS.IO SOFTWARE. THEY DO NOT

REFER TO THE ERC-20 COMPATIBLE TOKENS BEING DISTRIBUTED ON

THE ETHEREUM BLOCKCHAIN IN CONNECTION WITH THE EOS TOKEN

DISTRIBUTION.

All blockchains are resource constrained and require a system to prevent

abuse. With a blockchain that uses EOS.IO software, there are three broad

classes of resources that are consumed by applications:

1. Bandwidth and Log Storage (Disk);

2. Computation and Computational Backlog (CPU); and

3. State Storage (RAM).

Bandwidth and computation have two components, instantaneous usage and

long-term usage. A blockchain maintains a log of all messages and this log is

ultimately stored and downloaded by all full nodes. With the log of messages

it is possible to reconstruct the state of all applications.

The computational debt is calculations that must be performed to regenerate

state from the message log. If the computational debt grows too large then it

becomes necessary to take snapshots of the blockchain's state and discard the

blockchain's history. If computational debt grows too quickly then it may take

6 months to replay 1 year worth of transactions. It is critical, therefore, that the

computational debt be carefully managed.

Blockchain state storage is information that is accessible from application

logic. It includes information such as order books and account balances. If the

state is never read by the application then it should not be stored. For

example, blog post content and comments are not read by application logic

so they should not be stored in the blockchain's state. Meanwhile the

existence of a post/comment, the number of votes, and other properties do

get stored as part of the blockchain's state.

Block producers publish their available capacity for bandwidth, computation,

and state. The EOS.IO software allows each account to consume a percentage

of the available capacity proportional to the amount of tokens held in a 3-day

staking contract. For example, if a blockchain based on the EOS.IO software is

launched and if an account holds 1% of the total tokens distributable pursuant

to that blockchain, then that account has the potential to utilize 1% of the

state storage capacity.

Adopting the EOS.IO software on a launched blockchain means bandwidth

and computational capacity are allocated on a fractional reserve basis because

they are transient (unused capacity cannot be saved for future use). The

algorithm used by EOS.IO software is similar to the algorithm used by Steem

to rate-limit bandwidth usage.

Objective and Subjective Measurements

As discussed earlier, instrumenting computational usage has a significant

impact on performance and optimization; therefore, all resource usage

constraints are ultimately subjective and enforcement is done by block

producers according to their individual algorithms and estimates.

That said, there are certain things that are trivial to measure objectively. The

number of messages delivered and the size of the data stored in the internal

database are cheap to measure objectively. The EOS.IO software enables block

producers to apply the same algorithm over these objective measures but

may choose to apply stricter subjective algorithms over subjective

measurements.

Receiver Pays

Traditionally, it is the business that pays for office space, computational

power, and other costs required to run the business. The customer buys

specific products from the business and the revenue from those product sales

is used to cover the business costs of operation. Similarly, no website

obligates its visitors to make micropayments for visiting its website to cover

hosting costs. Therefore, decentralized applications should not force its

customers to pay the blockchain directly for the use of the blockchain.

A launched blockchain that uses the EOS.IO software does not require its

users to pay the blockchain directly for its use and therefore does not

constrain or prevent a business from determining its own monetization

strategy for its products.

Delegating Capacity

A holder of tokens on a blockchain launched adopting the EOS.IO software

who may not have an immediate need to consume all or part of the available

bandwidth, can give or rent such unconsumed bandwidth to others; the block

producers running EOS.IO software on such blockchain will recognize this

delegation of capacity and allocate bandwidth accordingly.

Separating Transaction costs from Token Value

One of the major benefits of the EOS.IO software is that the amount of

bandwidth available to an application is entirely independent of any token

price. If an application owner holds a relevant number of tokens on a

blockchain adopting EOS.IO software, then the application can run indefinitely

within a fixed state and bandwidth usage. In such case, developers and users

are unaffected from any price volatility in the token market and therefore not

reliant on a price feed. In other words, a blockchain that adopts the EOS.IO

software enables block producers to naturally increase bandwidth,

computation, and storage available per token independent of the token's

value.

A blockchain using EOS.IO software also awards block producers tokens every

time they produce a block. The value of the tokens will impact the amount of

bandwidth, storage, and computation a producer can afford to purchase; this

model naturally leverages rising token values to increase network

performance.

State Storage Costs

While bandwidth and computation can be delegated, storage of application

state will require an application developer to hold tokens until that state is

deleted. If state is never deleted then the tokens are effectively removed from

circulation.

Every user account requires a certain amount of storage; therefore, every

account must maintain a minimum balance. As storage capacity of the

network increases this minimum required balance will fall.

Block Rewards

A blockchain that adopts the EOS.IO software will award new tokens to a

block producer every time a block is produced. In these circumstances, the

number of tokens created is determined by the median of the desired pay

published by all block producers. The EOS.IO software may be configured to

enforce a cap on producer awards such that the total annual increase in token

supply does not exceed 5%.

Community Benefit Applications

In addition to electing block producers, pursuant to a blockchain based on the

EOS.IO software, users can elect 3 community benefit applications also known

as smart contracts. These 3 applications will receive tokens of up to a

configured percent of the token supply per annum minus the tokens that have

been paid to block producers. These smart contracts will receive tokens

proportional to the votes each application has received from token holders.

The elected applications or smart contracts can be replaced by newly elected

applications or smart contracts by token holders.

Governance

Governance is the process by which people reach consensus on subjective

matters that cannot be captured entirely by software algorithms. An EOS.IO

software-based blockchain implements a governance process that efficiently

directs the existing influence of block producers. Absent a defined governance

process, prior blockchains relied ad hoc, informal, and often controversial

governance processes that result in unpredictable outcomes.

A blockchain based on the EOS.IO software recognizes that power originates

with the token holders who delegate that power to the block producers. The

block producers are given limited and checked authority to freeze accounts,

update defective applications, and propose hard forking changes to the

underlying protocol.

Embedded into the EOS.IO software is the election of block producers. Before

any change can be made to the blockchain these block producers must

approve it. If the block producers refuse to make changes desired by the

token holders then they can be voted out. If the block producers make

changes without permission of the token holders then all other non-

producing full-node validators (exchanges, etc) will reject the change.

Freezing Accounts

Sometimes a smart contact behaves in an aberrant or unpredictable manner

and fails to perform as intended; other times an application or account may

discover an exploit that enables it to consume an unreasonable amount of

resources. When such issues inevitably occur, the block producers have the

power to rectify such situations.

The block producers on all blockchains have the power to select which

transactions are included in blocks which gives them the ability to freeze

accounts. A blockchain using EOS.IO software formalizes this authority by

subjecting the process of freezing an account to a 17/21 vote of active

producers. If the producers abuse the power they can be voted out and an

account will be unfrozen.

Changing Account Code

When all else fails and an "unstoppable application" acts in an unpredictable

manner, a blockchain using EOS.IO software allows the block producers to

replace the account's code without hard forking the entire blockchain. Similar

to the process of freezing an account, this replacement of the code requires a

17/21 vote of elected block producers.

Constitution

The EOS.IO software enables blockchains to establish a peer-to-peer terms of

service agreement or a binding contract among those users who sign it,

referred to as a "constitution". The content of this constitution defines

obligations among the users which cannot be entirely enforced by code and

facilitates dispute resolution by establishing jurisdiction and choice of law

along with other mutually accepted rules. Every transaction broadcast on the

network must incorporate the hash of the constitution as part of the signature

and thereby explicitly binds the signer to the contract.

The constitution also defines the human-readable intent of the source code

protocol. This intent is used to identify the difference between a bug and a

feature when errors occur and guides the community on what fixes are proper

or improper.

Upgrading the Protocol & Constitution

The EOS.IO software defines a process by which the protocol as defined by the

canonical source code and its constitution, can be updated using the

following process:

1. Block producers propose a change to the constitution and obtains

17/21 approval.

2. Block producers maintain 17/21 approval for 30 consecutive days.

3. All users are required to sign transactions using the hash of the new

constitution.

4. Block producers adopt changes to the source code to reflect the

change in the constitution and propose it to the blockchain using the

hash of a git commit.

5. Block producers maintain 17/21 approval for 30 consecutive days.

6. Changes to the code take effect 7 days later, giving all full nodes 1

week to upgrade after ratification of the source code.

7. All nodes that do not upgrade to the new code shut down

automatically.

By default configuration of the EOS.IO software, the process of updating the

blockchain to add new features takes 2 to 3 months, while updates to fix non-

critical bugs that do not require changes to the constitution can take 1 to 2

months.

Emergency Changes

The block producers may accelerate the process if a software change is

required to fix a harmful bug or security exploit that is actively harming users.

Generally speaking it could be against the constitution for accelerated

updates to introduce new features or fix harmless bugs.

Scripts & Virtual Machines

The EOS.IO software will be first and foremost a platform for coordinating the

delivery of authenticated messages to accounts. The details of scripting

language and virtual machine are implementation specific details that are

mostly independent from the design of the EOS.IO technology. Any language

or virtual machine that is deterministic and properly sandboxed with sufficient

performance can be integrated with the EOS.IO software API.

Schema Defined Messages

All messages sent between accounts are defined by a schema which is part of

the blockchain consensus state. This schema allows seamless conversion

between binary and JSON representation of the messages.

Schema Defined Database

Database state is also defined using a similar schema. This ensures that all

data stored by all applications is in a format that can be interpreted as human

readable JSON but stored and manipulated with the efficiency of binary.

Separating Authentication from Application

To maximize parallelization opportunities and minimize the computational

debt associated with regenerating application state from the transaction log,

EOS.IO software separates validation logic into three sections:

1. Validating that a message is internally consistent;

2. Validating that all preconditions are valid; and

3. Modifying the application state.

Validating the internal consistency of a message is read-only and requires no

access to blockchain state. This means that it can be performed with

maximum parallelism. Validating preconditions, such as required balance, is

read-only and therefore can also benefit from parallelism. Only modification

of application state requires write access and must be processed sequentially

for each application.

Authentication is the read-only process of verifying that a message can be

applied. Application is actually doing the work. In real time both calculations

are required to be performed, however once a transaction is included in the

blockchain it is no longer necessary to perform the authentication operations.

Virtual Machine Independent Architecture

It is the intention of the EOS.IO software-based blockchain that multiple

virtual machines can be supported and new virtual machines added over time

as necessary. For this reason, this paper will not discuss the details of any

particular language or virtual machine. That said, there are two virtual

machines that are currently being evaluated for use with an EOS.IO software-

based blockchain.

Web Assembly (WASM)

Web Assembly is an emerging web standard for building high performance

web applications. With a few small modifications Web Assembly can be made

deterministic and sandboxed. The benefit of Web Assembly is the widespread

support from industry and that it enables contracts to be developed in familiar

languages such as C or C++.

Ethereum developers have already begun modifying Web Assembly to

provide suitable sandboxing and determinism in with their Ethereum flavored

Web Assembly (WASM). This approach can be easily adapted and integrated

with EOS.IO software.

Ethereum Virtual Machine (EVM)

This virtual machine has been used for most existing smart contracts and

could be adapted to work within an EOS.IO blockchain. It is conceivable that

EVM contracts could be run within their own sandbox inside an EOS.IO

software-based blockchain and that with some adaptation EVM contracts

could communicate with other EOS.IO software blockchain applications.

Inter Blockchain Communication

EOS.IO software is designed to facilitate inter-blockchain communication. This

is achieved by making it easy to generate proof of message existence and

https://github.com/ewasm/design
https://github.com/ewasm/design

proof of message sequence. These proofs combined with an application

architecture designed around message passing enables the details of inter-

blockchain communication and proof validation to be hidden from application

developers.

Merkle Proofs for Light Client Validation (LCV)

Integrating with other blockchains is much easier if clients do not need to

process all transactions. After all, an exchange only cares about transfers in

and out of the exchange and nothing more. It would also be ideal if the

exchange chain could utilize lightweight merkle proofs of deposit rather than

having to trust its own block producers entirely. At the very least a chain's

block producers would like to maintain the smallest possible overhead when

synchronizing with another blockchain.

The goal of LCV is to enable the generation of relatively light-weight proof of

existence that can be validated by anyone tracking a relatively light-weight

data set. In this case the objective is to prove that a particular transaction was

included in a particular block and that the block is included in the verified

history of a particular blockchain.

Bitcoin supports validation of transactions assuming all nodes have access to

the full history of block headers which amounts to 4MB of block headers per

https://camo.githubusercontent.com/d1247e97697c62a84ed549bb9b00f601beb013a0/687474703a2f2f656f732e696f2f7770696d672f4469616772616d312e6a7067

year. At 10 transactions per second, a valid proof requires about 512 bytes.

This works well for a blockchain with a 10 minute block interval, but is no

longer "light" for blockchains with a 3 second block interval.

The EOS.IO software enables lightweight proofs for anyone who has any

irreversible block header after the point in which the transaction was included.

Using the hash-linked structure shown below it is possible to prove the

existence of any transaction with a proof less than 1024 bytes in size. If it is

assumed that validating nodes are keeping up with all block headers in the

past day (2 MB of data), then proving these transactions will only require

proofs 200 bytes long.

There is little incremental overhead associated with producing blocks with the

proper hash-linking to enable these proofs which means there is no reason

not to generate blocks this way.

When it comes time to validate proofs on other chains there are a wide variety

of time/ space/ bandwidth optimizations that can be made. Tracking all block

headers (420 MB/year) will keep proof sizes small. Tracking only recent

headers can offer a trade off between minimal long-term storage and proof

size. Alternatively, a blockchain can use a lazy evaluation approach where it

remembers intermediate hashes of past proofs. New proofs only have to

include links to the known sparse tree. The exact approach used will

necessarily depend upon the percentage of foreign blocks that include

transactions referenced by merkle proof.

After a certain density of interconnectedness it becomes more efficient to

simply have one chain contain the entire block history of another chain and

eliminate the need for proofs all together. For performance reasons, it is ideal

to minimize the frequency of inter-chain proofs.

Latency of Interchain Communication

When communicating with another outside blockchain, block producers must

wait until there is 100% certainty that a transaction has been irreversibly

confirmed by the other blockchain before accepting it as a valid input. Using

an EOS.IO software-based blockchain and DPOS with 3 second blocks and 21

producers, this takes approximately 45 seconds. If a chain's block producers

do not wait for irreversibility it would be like an exchange accepting a deposit

that was later reversed and could impact the validity of the blockchain's

consensus.

Proof of Completeness

When using merkle proofs from outside blockchains, there is a significant

difference between knowing that all transactions processed are valid and

knowing that no transactions have been skipped or omitted. While it is

impossible to prove that all of the most recent transactions are known, it is

possible to prove that there have been no gaps in the transaction history. The

EOS.IO software facilitates this by assigning a sequence number to every

message delivered to every account. A user can use these sequence numbers

to prove that all messages intended for a particular account have been

processed and that they were processed in order.

Conclusion

The EOS.IO software is designed from experience with proven concepts and

best practices, and represents fundamental advancements in blockchain

technology. The software is part of a holistic blueprint for a globally scalable

blockchain society in which decentralised applications can be easily deployed

and governed.

